《中考數(shù)學考點專題復習 幾何作圖課件.ppt》由會員分享,可在線閱讀,更多相關《中考數(shù)學考點專題復習 幾何作圖課件.ppt(29頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、幾何作圖,數(shù)學,1尺規(guī)作圖的作圖工具限定只用圓規(guī)和沒有刻度的直尺 2基本作圖 (1)作一條線段等于已知線段; (2)作一個角等于已知角; (3)作角的平分線; (4)作線段的垂直平分線; (5)過一點作已知直線的垂線,3利用基本作圖作三角形 (1)已知三邊作三角形; (2)已知兩邊及其夾角作三角形; (3)已知兩角及其夾邊作三角形; (4)已知底邊及底邊上的高作等腰三角形; (5)已知一直角邊和斜邊作直角三角形,4與圓有關的尺規(guī)作圖 (1)過不在同一直線上的三點作圓(即三角形的外接圓); (2)作三角形的內(nèi)切圓; (3)作圓的內(nèi)接正方形和正六邊形 5有關中心對稱或軸對稱的作圖以及設計圖案是中考
2、的常見類型,1兩種畫圖方法 對于一個既不屬于尺規(guī)基本作圖,又不屬于已知條件為邊角邊、角邊角、角角邊、邊邊邊、斜邊直角邊的三角形的作圖題,可以分析圖形中是否有屬于上述情況的三角形,先把它作出來,再發(fā)展成整個圖形,這種思考方法,稱為三角形奠基法;也可以按求作圖形的要求,一步一步地直接畫出圖形,這時,關鍵的點常常由兩條直線(或圓弧)相交來確定,稱為交會法事實上,往往把三角形奠基法和交會法結(jié)合使用,2三點注意 (1)一般的幾何作圖,初中階段只要求寫出已知、求作、作法三個步驟,完成作圖時,需要注意作圖痕跡的保留,作法中要注意作圖語句的規(guī)范和最后的作圖結(jié)論 (2)根據(jù)已知條件作幾何圖形時,可采用逆向思維,
3、假設已作出圖形,再尋找圖形的性質(zhì),然后作圖或設計方案 (3)實際問題要理解題意,將實際問題轉(zhuǎn)化為數(shù)學問題,3六個步驟 尺規(guī)作圖的基本步驟: (1)已知:寫出已知的線段和角,畫出圖形; (2)求作:求作什么圖形,它符合什么條件,一一具體化; (3)作法:應用“五種基本作圖”,敘述時不需重述基本作圖的過程,但圖中必須保留基本作圖的痕跡; (4)證明:為了驗證所作圖形的正確性,把圖作出后,必須再根據(jù)已知的定義、公理、定理等,結(jié)合作法來證明所作出的圖形完全符合題設條件; (5)討論:研究是不是在任何已知的條件下都能作出圖形;在哪些情況下,問題有一個解、多個解或者沒有解; (6)結(jié)論:對所作圖形下結(jié)論,
4、B,1(2014安順)用直尺和圓規(guī)作一個角等于已知角,如圖,能得出AOBAOB的依據(jù)是( ) ASAS BSSS CASA DAAS,D,2(2013曲靖)如圖,以AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C,D為圓心,大于CD的長為半徑畫弧,兩弧在AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是( ) A射線OE是AOB的平分線 BCOD是等腰三角形 CC,D兩點關于OE所在直線對稱 DO,E兩點關于CD所在直線對稱,A,3(2015嘉興)數(shù)學活動課上,四位同學圍繞作圖問題:“如圖,已知直線l和l外一點P,用直尺和圓規(guī)作直線
5、PQ,使PQl于點Q.”分別作出了下列四個圖形其中作法錯誤的是( ),D,4(2015深圳)如圖,已知ABC,ABBC,用尺規(guī)作圖的方法在BC上取一點P,使得PAPCBC,則下列選項正確的是( ),5(2014紹興)用直尺和圓規(guī)作ABC,使BCa,ACb,B35,若這樣的三角形只能作一個,則a,b間滿足的關系式是______________________,畫三角形,【例1】(2015杭州)“綜合與實踐”學習活動準備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個單位長度 (1)用記號(a,b,c)(abc)表示一個滿足條件的三角形
6、,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形請列舉出所有滿足條件的三角形 (2)用直尺和圓規(guī)作出三邊滿足abc的三角形(用給定的單位長度,不寫作法,保留作圖痕跡),解:(1)共9種:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4)(2)由(1)可知,只有(2,3,4),即a2,b3,c4時滿足abc.如圖的ABC即為滿足條件的三角形,【點評】(1)作三角形包括:已知三角形的兩邊及其夾角,求作三角形;已知三角形的兩角及其夾邊,求作三角形;已知三角形的三邊,求作三角形; (2)求作三角
7、形的關鍵是確定三角形的頂點;而求作直角三角形時,一般先作出直角,然后根據(jù)條件作出所求的圖形,對應訓練 1(2015南京)如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標注數(shù)字3),解:滿足條件的所有圖形如圖所示:,應用角平分線、線段的垂直平分線性質(zhì)畫圖,解:(1)如圖,【點評】本題考查了尺規(guī)作圖及解直角三角形的應用,正確的作出圖形是解答本題的關鍵,對應訓練 2(2015濟寧)如圖,在ABC中,ABAC,DAC是ABC的一個外角 實驗與操作: 根據(jù)要求進行尺
8、規(guī)作圖,并在圖中標明 相應字母(保留作圖痕跡,不寫作法) (1)作DAC的平分線AM; (2)作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE,CF. 猜想并證明: 判斷四邊形AECF的形狀并加以證明,通過畫圖確定圓心,解:(1)如圖,點O為所求,【點評】根據(jù)“不在同一直線上的三點確定一個圓”,在AB上另找一點C,分別畫弦AC,BC的垂直平分線,交點即為圓心O.,對應訓練 3(2014蘭州)如圖,在ABC中,先作BAC的角平分線AD交BC于點D,再以AC邊上的一點O為圓心,過A,D兩點作O(用尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆加黑) 解:作出角平分線A
9、D,作AD的中垂線交AC于點O,作出O,O為所求作的圓,試題尺規(guī)作圖,已知頂角和底邊上的高,求作等腰三角形 已知:,線段a. 求作:ABC,使ABAC,BAC,ADBC于D,且ADa.,錯解如圖,(1)作EAF; (2)作AG平分EAF,并在AG上截取ADa; (3)過D畫直線MN交AE,AF分別于C,B,ABC為所求作的等腰三角形 剖析上述畫法考慮AD平分BAC,等腰三角形頂角的平分線與底邊上的高重合,但是畫法(3)沒有注意到要使ADBC,也難以使ABAC.,正解如圖,(1)作EAF (2)作AG平分EAF,并在AG上截取ADa (3)過D作MNAG,MN與AE,AF分別交于B,C.則ABC即為所求作的等腰三角形,