高中數(shù)學第10講(必修2)空間幾何體的三視圖與直觀圖、表面積和體積.ppt

上傳人:xian****812 文檔編號:15165530 上傳時間:2020-08-04 格式:PPT 頁數(shù):28 大?。?.48MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學第10講(必修2)空間幾何體的三視圖與直觀圖、表面積和體積.ppt_第1頁
第1頁 / 共28頁
高中數(shù)學第10講(必修2)空間幾何體的三視圖與直觀圖、表面積和體積.ppt_第2頁
第2頁 / 共28頁
高中數(shù)學第10講(必修2)空間幾何體的三視圖與直觀圖、表面積和體積.ppt_第3頁
第3頁 / 共28頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學第10講(必修2)空間幾何體的三視圖與直觀圖、表面積和體積.ppt》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學第10講(必修2)空間幾何體的三視圖與直觀圖、表面積和體積.ppt(28頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、(必修2) 第一章 空間幾何體,第10講,空間幾何體的三視圖與直觀圖、表面積和體積,知識體系,,1.了解柱、錐、臺、球的概念、性質(zhì)及他們之間的關(guān)系,能識別柱、錐、臺、球的結(jié)構(gòu)特征; 2.能識別各種簡單幾何體和簡單組合體的三視圖,并會用斜二測畫法畫出他們的直觀圖.能進行三視圖與直觀圖的相互轉(zhuǎn)化. 3.了解柱、錐、臺、球的表面積和體積的計算公式,并能運用這些公式解決相關(guān)問題.,1.下列說法中正確的是( ),D,A.有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱 B.用一個平面去截一個圓錐,可以得到一個圓臺和一個圓錐 C.有一個面是多邊形,其余各面都是三角形的幾何體是棱錐 D.將一個直角三

2、角形繞其一條直角邊旋轉(zhuǎn)一周,所得圓錐的母線長等于斜邊長,由棱柱、圓錐、棱錐的定義知,A、B、C不正確,故選D.,2.已知正三角形ABC的邊長為a,那么ABC的平面直觀圖ABC的面積為( ),D,A. a2 B. A2 C. a2 D. a2,如圖,圖、圖所示的分別是實際圖形和直觀圖.,從圖可知,AB=AB=a, OC= OC= a, 所以CD=OCsin45= a, 所以SABC= ABCD = a a= a2, 故選D.,3.某幾何體的直觀圖如圖所示,該幾何體的主(正)視圖和左(側(cè))視圖都正確的是( ),B,A. B. C.

3、 D.,主視圖應有一條實對角線,且對角線應向上到下,左視時,看到一個矩形,且不能有實對角線,故淘汰A、D,故選B.,4.如圖是一個空間幾何體的三視圖,若它的體積是3 ,則a= .,由三視圖可知幾何體為一個直三棱柱,底面三角形中,邊長為2的邊上的高為a, 則V=3 2a=3 ,所以a= .,1.柱、錐、臺、球的結(jié)構(gòu)特征,S底h,S底h,2(R2+Rh,R2h,R2+R,R2h,4R2,R3,2.三視圖與直觀圖 (1)我們把光由一點向外散射形成的投影,叫做 ;在一束平行光照射下形成的投影,叫做 .在平行投影中,投影線正對著投影面時,叫做正投影,否則叫做斜投影. (2

4、)空間幾何體的三視圖:光線從幾何體的前面向后面正投影得到的投影圖叫做幾何體的 ; 光線從幾何體的左面向右面正投影得到的投影圖叫做幾何體的 ; 光線從幾何體的上面向下面正投影得到的投影圖叫做幾何體的 .,中心投影,平行投影,正視圖,側(cè)視圖,俯視圖,(3)畫三視圖的基本要求是 . 高度一樣, 長度一樣, . 寬度一樣. (4)斜二測畫法的規(guī)則 在已知圖中建立直角坐標系xOy,畫直觀圖時,它們分別對應x軸和y軸,兩軸交于點O,使xOy45,它們確定的平面表示水平面.,正視圖和側(cè)視圖,俯視圖和正視圖,圖和俯視圖,側(cè)視,已知圖形中

5、平行于x軸或y軸的線段在直觀圖中分別畫成 . 已知圖形中平行于x軸的線段的長度,在直觀圖中 ;平行與y軸的線段的長度,在直觀圖中,長度為 .,平行于x軸或y軸,長度不變,原來的一半,題型一 三視圖與直觀圖,例1,,一個空間幾何體的三視圖如圖所示,則該幾何體的體積為( ),A.2+2 B.4+2 C.2+ D.4+,C,本例題型的切入點和基本策略是將三視圖還原成空間幾何體,必要時作出直觀圖.,該空間幾何體為一個圓柱和一個正四棱錐構(gòu)成的組合體. 圓柱的底面半徑為1,高為2,故其體積為2. 四棱錐的底面邊長為 ,高為 , 所以其體積為 ( )2 = . 所

6、以該幾何體的體積為2+ .選C,1.三視圖是新課標中新增的內(nèi)容,要求是能畫,能識別,能應用.經(jīng)常與立體幾何中有關(guān)的計算問題融合在一起考查,如面積、體積的計算,考查學生的空間想象能力,因此我們應對常見的簡單幾何體的三視圖有所理解,能夠進行識別和判斷. 2.注意三視圖的特點:“正、側(cè)一樣高,正、俯一樣長,俯、側(cè)一樣寬”. 3.空間想象能力與多觀察實物相結(jié)合是解決此類問題的關(guān)鍵.,已知一幾何體ABCDABCD的正視圖、側(cè)視圖和俯視圖分別為圖中的所示.圖中的四邊形DCCD是面積為80的矩形;圖中的四邊形ABCD是一直角梯形,AB=2AD且BC=CD;且原圖中CC=2BC. 請你畫出該幾何 體的直觀

7、圖(畫 圖時、尺寸比例 不做嚴格要求), 并求該幾何體的 體積.,該幾何體的直觀圖如下圖所示的圖. 設(shè)AD=x,BC=y. 由圖得(2x)2+(y-x)2=y2, 所以2y=5x. 又由圖可知2x2y=80. 由得x=2 ,所以AB=4 , 所以BC=y= x=5 ,CC=10 . 故該幾何體的體積 V=S梯形ABCDCC= ABCC=280 .,空間想象力與多觀察實物相結(jié)合是解決此類題的關(guān)鍵.,題型二 簡單幾何體的體積與表面積,例2,,如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1=B1C1=2,A1B1C1=90,A

8、A1=4,BB1=3,CC1=2,求該幾何體的體積及截面ABC的面積.,過C作平行于底面A1B1C1的截面A2B2C2,將該幾何體分割為柱和錐或?qū)⑵溥€原為直棱柱,然后計算其體積.,(方法一)過C作平行于A1B1C1的截面A2B2C,交AA1、BB1于A2、B2. 由直三棱柱性質(zhì)可知中B2C平面ABB2A2, 則V=V柱A1B1C1-A2B2C+V錐C-ABB2A2 = 222+ (1+2)22 =6.,(方法二)延長BB1、CC1到B3、C3,使得BB1=CC3=AA1. 則V=V柱A1B1C1-AB3C3-V錐A-BB3C3C = 224- (1+2)22 =6. 在ABC中,AB=

9、 = , BC= = , AC= =2 . 則SABC= 2 = .,處理不規(guī)則幾何體的體積時,或?qū)⑵浞指钪?、錐、臺或?qū)⒀a體為柱、錐、臺,然后計算其體積.,題型三 簡單組合體問題,例3,,有一個圓錐的側(cè)面展開圖是一個半徑為5,圓心角為 的扇形,在這個圓錐中內(nèi)接一個高為x的圓柱. (1)求圓錐的體積; (2)當x為何值時,圓柱的側(cè)面積最大?,由圓錐的側(cè)面展開圖,圓心角與半徑的關(guān)系可求圓錐的母線長,底面半徑和高.內(nèi)接圓柱的側(cè)面積是高x的函數(shù),再用代數(shù)方法求最值.,(1)因為圓錐側(cè)面展開圖的半徑為5,所以圓錐的母線長為5.設(shè)圓錐的底面半徑為r,則2r=

10、5 ,所以r=3,則圓錐的高為4,故體積V= r24=12.,(2)右圖為軸截面圖,這個圖為等腰三角形中內(nèi)接一個矩形. 設(shè)圓柱的底面半徑為y, 則 = ,得y=3- x. 圓柱的側(cè)面積 S(x)=2(3- x)x = (4x-x2)= 4-(x-2)2(0 x4). 當x=2時,S(x)有最大值6. 所以當圓柱的高為2時,有最大側(cè)面積6.,旋轉(zhuǎn)體的接、切問題常考慮其相應軸截面內(nèi)的接、切情況,實際是把空間圖形平面化.,一球與邊長為2的正方體的各棱相切,則球的表面積是 ,體積是 .,正方體相對棱之間的距離為球的直徑2R. 則有2R=2 ,所以R= , 所以S球=4R2=8,V球= R3= .,8,,1.充分熟記柱、錐、臺、球的概念及其結(jié)構(gòu)特征,并能善于運用這些特征描述簡單物體的結(jié)構(gòu). 2.三視圖的識別規(guī)則是:“正、側(cè)同高,正、俯同長,俯、側(cè)同寬”. 3.要用聯(lián)系的觀點來認識柱、錐、臺、球的性質(zhì),在給出相關(guān)體積、表面積公式的前提下能準確計算其體積和表面積. 4.將空間問題轉(zhuǎn)化化歸為平面圖形問題是解決立體幾何問題的最基本、最常用的方法.,課后再做好復習鞏固. 謝謝!,再見!,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!