浙江省2013年高考數(shù)學第二輪復習 坐標系與參數(shù)方程 文

上傳人:zhu****ng 文檔編號:148250854 上傳時間:2022-09-04 格式:DOC 頁數(shù):6 大?。?.43MB
收藏 版權申訴 舉報 下載
浙江省2013年高考數(shù)學第二輪復習 坐標系與參數(shù)方程 文_第1頁
第1頁 / 共6頁
浙江省2013年高考數(shù)學第二輪復習 坐標系與參數(shù)方程 文_第2頁
第2頁 / 共6頁
浙江省2013年高考數(shù)學第二輪復習 坐標系與參數(shù)方程 文_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《浙江省2013年高考數(shù)學第二輪復習 坐標系與參數(shù)方程 文》由會員分享,可在線閱讀,更多相關《浙江省2013年高考數(shù)學第二輪復習 坐標系與參數(shù)方程 文(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、選修4—4 坐標系與參數(shù)方程 真題試做 1.(2012·北京高考,理9)直線(t為參數(shù))與曲線(α為參數(shù))的交點個數(shù)為__________. 2.(2012·江西高考,理15)曲線C的直角坐標方程為x2+y2-2x=0,以原點為極點,x軸的正半軸為極軸建立極坐標系,則曲線C的極坐標方程為__________. 3.(2012·浙江高考,自選模塊,04)在直角坐標系xOy中,設傾斜角為α的直線l:(t為參數(shù))與曲線C:(θ為參數(shù))相交于不同兩點A,B. (1)若α=,求線段AB中點M的坐標; (2)若|PA|·|PB|=|OP|2,其中P(2,),求直線l的斜率. 4.(201

2、2·課標全國高考,理23)已知曲線C1的參數(shù)方程是(φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2.正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標為. (1)求點A,B,C,D的直角坐標; (2)設P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍. 5.(2012·遼寧高考,文23)在直角坐標系xOy中,圓C1:x2+y2=4,圓C2:(x-2)2+y2=4. (1)在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓C1,C2的極坐標方程,并求出圓C1,C2的交點坐標(用極坐標

3、表示); (2)求圓C1與C2的公共弦的參數(shù)方程. 考向分析 從近幾年的高考情況看,該部分主要有三個考點:一是平面坐標系的伸縮變換;二是極坐標方程與直角坐標方程的互化;三是極坐標方程與參數(shù)方程的綜合應用.對于平面坐標系的伸縮變換,主要是以平面直角坐標系和極坐標系為平臺,考查伸縮變換公式的應用,試題設計大都是運用坐標法研究點的位置或研究幾何圖形的形狀.對于極坐標方程與直角坐標方程的互化,是高考的重點和熱點,涉及到直線與圓的極坐標方程,從點與直線、直線與圓的位置關系等不同角度考查,研究求距離、最值、軌跡等常規(guī)問題.極坐標方程與參數(shù)方程的綜合應用,主要是以直線、圓和圓錐曲線的參數(shù)方程為背景,轉

4、化為普通方程,從而進一步判斷位置關系或進行有關距離、最值的運算. 預計2013年高考中,本部分內容主要考查極坐標方程與直角坐標方程的互化、參數(shù)方程與普通方程的互化,考查簡單曲線的極坐標方程和參數(shù)方程,試題以解答題的形式呈現(xiàn),屬于中檔題. 熱點例析 熱點一 平面坐標系的伸縮變換 【例1】在同一平面直角坐標系中,將直線x-2y=2變成直線2x′-y′=4,求滿足圖象變換的伸縮變換. 規(guī)律方法 1.平面坐標系的伸縮變換對圖形的變化起到了一個壓縮或拉伸的作用,如三角函數(shù)圖象周期的變化. 2.設點P(x,y)是平面直角坐標系中的任意一點,在變換φ:的作用下,點P(x,y)對應到點P′(x

5、′,y′),稱φ為平面直角坐標系中的坐標伸縮變換,簡稱伸縮變換. 變式訓練1 在同一平面直角坐標系中,經(jīng)過伸縮變換后,曲線C變?yōu)榍€2x′2+8y′2=1,則曲線C的方程為(  ). A.50x2+72y2=1 B.9x2+100y2=1 C.25x2+36y2=1 D.x2+y2=1 熱點二 極坐標方程與直角坐標方程的互化 【例2】在極坐標系中,已知圓ρ=2cos θ與直線3ρcos θ+4ρsin θ+a=0相切,求實數(shù)a的值. 規(guī)律方法 1.直角坐標和極坐標的互化 把直角坐標系的原點作為極點,x軸的正半軸作為極軸,并在兩坐標系中取相同的長度單位,設M是平面內任意一點,它

6、的直角坐標是(x,y),極坐標是(ρ,θ),則 x=ρcos θ,y=ρsin θ且ρ2=x2+y2,tan θ=(x≠0). 這就是直角坐標和極坐標的互化公式. 2.曲線的極坐標方程的概念:在極坐標系中,如果平面曲線C上任意一點的極坐標至少有一個滿足方程f(ρ,θ)=0,并且坐標適合f(ρ,θ)=0的點都在曲線C上,那么方程f(ρ,θ)=0就叫做曲線C的極坐標方程. 變式訓練2 圓O1和圓O2的極坐標方程分別為ρ=4cos θ,ρ=-sin θ. (1)把圓O1和圓O2的極坐標方程化為直角坐標方程; (2)求經(jīng)過圓O1,圓O2兩個交點的直線的直角坐標方程. 熱點三 參數(shù)方程與普

7、通方程的互化 【例3】把下列參數(shù)方程化為普通方程: (1) (2) 規(guī)律方法 1.參數(shù)方程部分,重點還是參數(shù)方程與普通方程的互化,主要是將參數(shù)方程消去參數(shù)化為普通方程. 2.參數(shù)方程與普通方程的互化:參數(shù)方程化為普通方程的過程就是消參過程,常見方法有三種: ①代入法:利用解方程的技巧求出參數(shù)t,然后代入消去參數(shù); ②三角法:利用三角恒等式消去參數(shù); ③整體消元法:根據(jù)參數(shù)方程本身的結構特征,從整體上消去參數(shù). 化參數(shù)方程為普通方程F(x,y)=0:在消參過程中注意變量x,y取值范圍的一致性,必須根據(jù)參數(shù)的取值范圍,確定f(t)和g(t)的值域即x,y的取值范圍. 變式訓練3

8、 把下列參數(shù)方程化為普通方程,并說明它們各表示什么曲線: (1)(t為參數(shù)); (2)(θ為參數(shù)). 熱點四 極坐標方程與參數(shù)方程的綜合應用 【例4】在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos=2.點P為曲線C上的動點,求點P到直線l距離的最大值. 規(guī)律方法 如果直接由曲線的極坐標方程看不出曲線是什么圖形,往往在將曲線的極坐標方程化為相應的直角坐標方程,再通過直角坐標方程判斷出曲線是什么圖形. 變式訓練4 在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為(

9、α為參數(shù)). (1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關系; (2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值. 1.(2012·安徽安慶二模,4)以平面直角坐標系的原點為極點,以x軸的正半軸為極軸,建立極坐標系,則曲線(φ為參數(shù),φ∈R)上的點到曲線ρcos θ+ρsin θ=4(ρ,θ∈R) 的最短距離是(  ). A.0    B.2-    C.1    D.2 2.設直線的參數(shù)方程為(t為參數(shù)),則其斜截式方程為__________. 3.(2012·廣東梅州

10、中學三模,15)在極坐標系中,若過點A(3,0)且與極軸垂直的直線交曲線ρ=4cos θ于A,B兩點,則|AB|=__________. 4.(2012·北京豐臺區(qū)三月模擬,11)在平面直角坐標系xOy中,直線l的參數(shù)方程是(t為參數(shù)).以O為極點,x軸正方向為極軸的極坐標系中,圓C的極坐標方程是ρ2-4ρcos θ+3=0.則圓心到直線的距離是__________. 5.在平面直角坐標系xOy中,判斷曲線C:(θ為參數(shù))與直線l:(t為參數(shù))是否有公共點,并證明你的結論. 6.(2012·江蘇鎮(zhèn)江5月模擬,21)已知橢圓C的極坐標方程為ρ2=,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方

11、程為(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和. 7.(2012·浙江鎮(zhèn)海中學,自選模塊04)已知點P(m,0)(m∈R),曲線C1:(θ為參數(shù))與曲線C2:ρcos=m交于不同的兩點A,B.(極點與直角坐標系的原點重合,極徑與直角坐標系中x軸的非負半軸重合). (1)求m的取值范圍; (2)若|PA|·|PB|=,求m的值. 參考答案 命題調研·明晰考向 真題試做 1.2 解析:由題意知直線與曲線的參數(shù)方程可分別化為x+y-1=0,x2+y2=9,進而求出圓心(0,0)到直線x+y-1=0的距離d==<3,∴交點個數(shù)為2. 2.ρ=2cos θ 3.解:設直線l

12、上的點A,B對應參數(shù)分別為t1,t2,將曲線C的參數(shù)方程化為普通方程+y2=1. (1)當α=時,設點M對應參數(shù)為t0. 直線l方程為(t為參數(shù)), 代入曲線C的普通方程+y2=1,得13t2+56t+48=0, 則t0==-, 所以點M的坐標為. (2)將代入曲線C的普通方程+y2=1, 得(cos2α+4sin2α)t2+(8sin α+4cos α)t+12=0, 因為|PA|·|PB|=|t1t2|=,|OP|2=7, 所以=7,得tan2α=. 由于Δ=32cos α(2sin α-cos α)>0,故tan α=. 所以直線l的斜率為. 4.解:(1)由

13、已知可得A, B, C, D, 即A(1,),B(-,1),C(-1,-),D(,-1). (2)設P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2, 則S=16cos2φ+36sin2φ+16=32+20sin2φ. 因為0≤sin2φ≤1,所以S的取值范圍是[32,52]. 5.解:(1)圓C1的極坐標方程為ρ=2, 圓C2的極坐標方程為ρ=4cos θ. 解得ρ=2,θ=±, 故圓C1與圓C2交點的坐標為,. 注:極坐標系下點的表示不唯一. (2)解法一:由得圓C1與C2交點的直角坐標分別為(1,),(1,-). 故圓C1

14、與C2的公共弦的參數(shù)方程為-≤t≤. (或參數(shù)方程寫成-≤y≤) 解法二:將x=1代入得ρcos θ=1, 從而ρ=. 于是圓C1與C2的公共弦的參數(shù)方程為-≤θ≤. 精要例析·聚焦熱點 熱點例析 【例1】解:設變換為代入第二個方程,得2λx-μy=4與x-2y=2比較,將其變成2x-4y=4,比較系數(shù)得λ=1,μ=4. ∴伸縮變換公式為 即直線x-2y=2圖象上所有點的橫坐標不變,縱坐標擴大到原來的4倍可得到直線2x′-y′=4. 【變式訓練1】A 解析:將代入曲線方程2x′2+8y′2=1,得:2·(5x)2+8·(3y)2=1,即50x2+72y2=1. 【例2】解

15、:將極坐標方程化為直角坐標方程,得圓的方程x2+y2=2x,即(x-1)2+y2=1, 直線的方程為3x+4y+a=0. 由題設知,圓心(1,0)到直線的距離為1, 即有=1, 解得a=-8或a=2.即a的值為-8或2. 【變式訓練2】解:(1)因為圓O1和圓O2的極坐標方程分別為 ρ=4cos θ,ρ=-sin θ, 又因為ρ2=x2+y2,ρcos θ=x,ρsin θ=y(tǒng), 所以由ρ=4cos θ,ρ=-sin θ得, ρ2=4ρcos θ,ρ2=-ρsin θ. 即x2+y2-4x=0,x2+y2+y=0. 所以圓O1和圓O2的直角坐標方程分別為 x2+y2-4

16、x=0,x2+y2+y=0. (2)由(1)易得,經(jīng)過圓O1和圓O2兩個交點的直線的直角坐標方程為4x+y=0. 【例3】解:(1)由已知 由三角恒等式cos2θ+sin2θ=1, 可知(x-3)2+(y-2)2=1,這就是它的普通方程. (2)由已知,得t=2x-2,代入y=5+t中, 得y=5+(2x-2), 即x-y+5-=0就是它的普通方程. 【變式訓練3】解:(1)由x=1+t,得t=2x-2. ∴y=2+(2x-2). ∴x-y+2-=0,此方程表示直線. (2)由得兩式平方相加得+=1,此方程表示橢圓. 【例4】解:ρcos=2化簡為ρcos θ+ρsin

17、 θ=4,則直線l的直角坐標方程為x+y=4. 設點P的坐標為(2cos α,sin α),得P到直線l的距離d=, 即d=,其中cos φ=,sin φ=. 當sin(α+φ)=-1時,dmax=2+. 【變式訓練4】解:(1)把極坐標系中的點P化為直角坐標,得P(0,4). 因為點P的直角坐標(0,4)滿足直線l的方程x-y+4=0,所以點P在直線l上. (2)因為點Q在曲線C上,故可設點Q的坐標為(cos α,sin α), 從而點Q到直線l的距離是 d== =cos+2, 由此得,當cos=-1時,d取得最小值,且最小值為. 創(chuàng)新模擬·預測演練 1.B 2.y

18、=x+3-2 3.2 4. 5.解:沒有公共點.證明如下:直線l的普通方程為x+2y-3=0. 把曲線C的參數(shù)方程代入l的方程x+2y-3=0, 得2cos θ+2sin θ-3=0,即sin=. 因為sin∈[-,],而?[-,]. 所以方程sin=無解. 即曲線C與直線l沒有公共點. 6.解:直線l的普通方程為y=x-2; 曲線C的普通方程為+=1. ∵F1(-1,0),F(xiàn)2(1,0), ∴點F1到直線l的距離d1==,點F2到直線l的距離d2==, ∴d1+d2=2. 7.解:(1)曲線C1化為普通方程C1:+y2=1, 曲線C2化為普通方程C2:y=x-m, 由得5x2-8mx+4m2-4=0. 由Δ=64m2-20(4m2-4)>0,得m2<5. ∴m的取值范圍為-<m<. (2)因為點P在直線C2上, 故直線C2可化為參數(shù)式: 代入C1:+y2=1中,得+2=1, 即得5t2+2mt+2m2-8=0. 設方程5t2+2mt+2m2-8=0的兩根為t1,t2, 則|PA|·|PB|=|t1t2|=, 由=?m2=1或m2=7(不合題意,舍去), 當|PA|·|PB|=時,m=±1.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!