《2013年高考數(shù)學(xué) 考前沖刺大題精做 專題5 圓錐曲線基礎(chǔ)篇 文(學(xué)生版)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2013年高考數(shù)學(xué) 考前沖刺大題精做 專題5 圓錐曲線基礎(chǔ)篇 文(學(xué)生版)(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、文科數(shù)學(xué)考前沖刺大題精做專題——系列五、圓錐曲線基礎(chǔ)篇(學(xué)生版)
【2013高考會(huì)這樣考】
1、 圓錐曲線的方程求法有兩種,一種是定義法;一種是待定系數(shù)法;
2、 數(shù)列的使用離心率的公式以及公式的變式,方便在計(jì)算圓錐曲線的方程中加以應(yīng)用;
3、 聯(lián)立直線與圓錐曲線的方程多使用根與系數(shù)的關(guān)系進(jìn)行解題;此外要看清楚直線是否過定點(diǎn),定點(diǎn)與圓錐曲線的位置關(guān)系;
4、 熟練的使用弦長公式.
【原味還原高考】
【高考還原1:(2012年高考(浙江文))】如圖,在直角坐標(biāo)系xOy中,點(diǎn)P(1,)到拋物線C:=2px(P>0)的準(zhǔn)線的距離為。點(diǎn)M(t,1)是C上的定點(diǎn),A,B是C上的兩動(dòng)點(diǎn),
2、且線段AB被直線OM平分。
(1)求p,t的值。
(2)求△ABP面積的最大值。
【高考還原2:(2012年高考(陜西文))】已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和上,,求直線的方程.
【細(xì)品經(jīng)典例題】
【經(jīng)典例題1】已知橢圓過點(diǎn),且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)的直線交橢圓于不同的兩點(diǎn)M、N,且滿足(其中點(diǎn)O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說明理由.
【名題巧練2】已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,
3、過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1)求橢圓的方程;
(2)是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.
(i)證明:;
(ii)求四邊形ABCD的面積S的最大值。
【名題巧練7】已知橢圓:,左、右兩個(gè)焦點(diǎn)分別為、,上頂點(diǎn),為正三角形且周長為6.
(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(2)為坐標(biāo)原點(diǎn),是直線上的一個(gè)動(dòng)點(diǎn),求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).
【名題巧練9】已知兩定點(diǎn),動(dòng)點(diǎn)P滿足,由點(diǎn)P向軸作垂線PQ,垂足為Q,點(diǎn)M滿足,點(diǎn)M的軌跡為C.
(I)求曲線C的方程;
(II)若線段AB是曲線C的一條動(dòng)弦,且,求坐標(biāo)原點(diǎn)O到動(dòng)弦AB距離的最大值.