河北大學(xué)工商學(xué)院數(shù)學(xué)物理方法第一章.ppt

上傳人:max****ui 文檔編號:14559219 上傳時(shí)間:2020-07-24 格式:PPT 頁數(shù):38 大?。?,011KB
收藏 版權(quán)申訴 舉報(bào) 下載
河北大學(xué)工商學(xué)院數(shù)學(xué)物理方法第一章.ppt_第1頁
第1頁 / 共38頁
河北大學(xué)工商學(xué)院數(shù)學(xué)物理方法第一章.ppt_第2頁
第2頁 / 共38頁
河北大學(xué)工商學(xué)院數(shù)學(xué)物理方法第一章.ppt_第3頁
第3頁 / 共38頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《河北大學(xué)工商學(xué)院數(shù)學(xué)物理方法第一章.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《河北大學(xué)工商學(xué)院數(shù)學(xué)物理方法第一章.ppt(38頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、1,第一篇 復(fù)變函數(shù)論,主要內(nèi)容: 復(fù)變函數(shù)和解析函數(shù) 復(fù)變函數(shù)的積分 復(fù)變函數(shù)的級數(shù) 留數(shù)定理 傅立葉變換,2, 1.1 復(fù)數(shù)與復(fù)數(shù)運(yùn)算,(一)復(fù)數(shù)的基本概念,數(shù)的擴(kuò)展:正數(shù)負(fù)數(shù)實(shí)數(shù) 在實(shí)數(shù)范圍內(nèi):方程 ax2 + bx + c = 0 當(dāng) = b2 4ac < 0時(shí),沒有實(shí)根。 擴(kuò)大數(shù)域,引進(jìn)復(fù)數(shù),第一章 復(fù)變函數(shù),3,,復(fù)數(shù)定義:,4,復(fù)數(shù)相等:,兩復(fù)數(shù): x1+i y1, x2+i y2 當(dāng)且僅當(dāng): x1 x2 , y1 y2 時(shí),我們才能說兩復(fù)數(shù)相等,記為 x1+iy1=x2 iy2,注意:復(fù)數(shù)不能夠比較大小。,復(fù)數(shù)的共軛,復(fù)數(shù)z=x+iy的共軛復(fù)數(shù) 為z*=x-iy

2、,共軛復(fù)數(shù)z*是復(fù)數(shù)z關(guān)于實(shí)軸的對稱點(diǎn),5,注意:,1)、,2)、,6,復(fù)數(shù)的其它表示法,,7,(2)向量表示法,復(fù)數(shù)的模(或絕對值),,8,模的性質(zhì),三角不等式,復(fù)數(shù)的輻角,,,9,輻角的主值,,10,(3)三角表示法,,11,補(bǔ)充:歐拉公式的證明,設(shè),可以證明級數(shù),在整個(gè)復(fù)數(shù)范圍是絕對收斂的,定義它的和函數(shù)為,z為純虛數(shù)iy時(shí),12,(二)無限遠(yuǎn)點(diǎn),復(fù)平面上有些個(gè)點(diǎn)比較特殊,比如:零點(diǎn)和無窮遠(yuǎn)點(diǎn)。 (1)復(fù)數(shù)零的幅角無意義,模為0。 (2)無窮遠(yuǎn)點(diǎn)的模為,幅角沒有意義。關(guān)于無窮遠(yuǎn)點(diǎn)的定義需要借助測地投影法。,復(fù)球面,復(fù)平面的無限遠(yuǎn)處看成一個(gè)“點(diǎn)”無限遠(yuǎn)點(diǎn) 包括有無限遠(yuǎn)點(diǎn)的復(fù)數(shù)平面稱為擴(kuò)充了

3、的復(fù)平面,實(shí)數(shù): (-,+) -,+,模有限的復(fù)數(shù)跟復(fù)平面上的有限遠(yuǎn)點(diǎn)一一對應(yīng) 模為無限大的復(fù)數(shù)也跟復(fù)平面上一點(diǎn)對應(yīng)(無限遠(yuǎn)點(diǎn)),13,如圖,一球的南極與復(fù)數(shù)平面的原點(diǎn)相切,平面上任意點(diǎn) A 與球的北極由一條直線相連,直線與球相交于 A 。由此,每一有限的復(fù)數(shù) 投影到球上一點(diǎn) 。這個(gè)投影叫測地投影,這個(gè)球叫復(fù)數(shù)球。,所有的無窮大復(fù)數(shù)(平面上無限遠(yuǎn)點(diǎn))投影到唯一的北極 N。故我們?yōu)榉奖?,將無窮遠(yuǎn)點(diǎn)看作一個(gè)點(diǎn)。其模無窮大,幅角無意義。,無窮遠(yuǎn)點(diǎn),14,設(shè)z1=x1+iy1和 z2=x2+iy2是兩個(gè)復(fù)數(shù),復(fù)數(shù)加減法滿足平行四邊形法則,或三角形法則,(三)復(fù)數(shù)的運(yùn)算,交換律、結(jié)合律、分配律成立,15

4、,乘法運(yùn)算,兩個(gè)復(fù)數(shù)相乘等于它們的模相乘,幅角相加,除法運(yùn)算,兩個(gè)復(fù)數(shù)相除等于它們的模相除,幅角相減,16,乘方(n整數(shù)),開方(n整數(shù)),17,逼近,實(shí)變數(shù)極限相關(guān)定理完全適用于復(fù)數(shù)。,18,,例:討論式子 在復(fù)平面上的意義,解:,,,為,圓上各點(diǎn),19,,例:計(jì)算,解:,,令,,20,21,,例:計(jì)算,解:,,,令,22,,,23,,,,24,25,,1.2 復(fù)變函數(shù),(一)、復(fù)變函數(shù)的定義,對于復(fù)變集合E中的每一復(fù)數(shù),有一個(gè)或多個(gè)復(fù)數(shù)值,w稱為的z復(fù)變函數(shù),z稱為w的宗量,,26,(二)、區(qū)域概念,由,確定的平面點(diǎn)集,稱為定點(diǎn)z0的鄰域,(1)、鄰域,(2)、內(nèi)點(diǎn),定點(diǎn)z0的鄰域

5、全含于點(diǎn)集E內(nèi),稱z0為點(diǎn)集E的內(nèi)點(diǎn),(3)、外點(diǎn),定點(diǎn)z0及其鄰域不含于點(diǎn)集E內(nèi),稱z0為點(diǎn)集E的外點(diǎn),(4)、鏡界點(diǎn),定點(diǎn)z0的鄰域既有含于E內(nèi),又有不含于E內(nèi)的點(diǎn),稱z0為點(diǎn)集E的鏡界點(diǎn)。,,,內(nèi)點(diǎn),鏡界點(diǎn),外點(diǎn),27,,,內(nèi)點(diǎn),鏡界點(diǎn),外點(diǎn),(5)、區(qū)域,A)全由內(nèi)點(diǎn)組成,B)具連通性:點(diǎn)集中任何兩點(diǎn)都可以用一條折線連接,且折線上的點(diǎn)屬于該點(diǎn)集。,(6)、閉區(qū)域,區(qū)域連同它的邊界稱為閉區(qū)域,如,表示以原點(diǎn)為圓心半徑為1的閉區(qū)域,(7)、單連通與復(fù)連通區(qū)域,單連通區(qū)域:區(qū)域內(nèi)任意閉曲線,其內(nèi)點(diǎn)都屬于該區(qū)域,,,,28,多項(xiàng)式,有理分式,根式,指數(shù)函數(shù),三角函數(shù),雙曲函數(shù),對數(shù)函數(shù),冪函數(shù)

6、,(三) 復(fù)變函數(shù)例,實(shí)周期2,純虛數(shù)周期2i,純虛數(shù)周期2i,29,, 三角函數(shù),實(shí)數(shù)周期 2; (2) 當(dāng) (3) 同樣有公式,模可以大于1,30,具純虛數(shù)周期 , 而對應(yīng)的實(shí)函數(shù)為非周期函數(shù),為無窮多值的多值函數(shù),負(fù)實(shí)數(shù)的對數(shù)仍有意義,,,指數(shù)函數(shù),雙曲函數(shù),對數(shù)函數(shù),31,,一般冪函數(shù),32,例:求方程 sinz=2,解:,設(shè),,33,,,,,,,兩種情況:,,,,34,,,,,或,由于,35,(四)、極限與連續(xù)性,設(shè)w=f(z)在z0點(diǎn)的某鄰域有定義,對于0,存在0,使,有,稱z -- z0時(shí)w0為極限,計(jì)為,注意:z在全平面,z -- z0須以任意方式,若有,稱f(z)在z0點(diǎn)

7、連續(xù),,36,復(fù)變函數(shù)論(theory of complex functions): 研究自變量是復(fù)數(shù)的函數(shù)的基本理論及應(yīng)用的數(shù)學(xué)分支,主要研究對象是解析函數(shù)。,復(fù)數(shù)函數(shù)發(fā)展簡史,早在16世紀(jì),一元二次、一元三次代數(shù)方程求解時(shí)就引入了虛數(shù)的基本思想,給出了虛數(shù)的符號和運(yùn)算法則。,1,復(fù)數(shù)起源于代數(shù)方程求根,意大利的卡丹諾(G.Cardano,1501-1576)在解三次方程時(shí)首先產(chǎn)生了負(fù)數(shù)開平方的思想。如,但,由于 在實(shí)數(shù)范圍內(nèi)無意義,在很長時(shí)間內(nèi),直到19世紀(jì)中葉,這類數(shù)仍然是不合法的。,法國的笛卡爾(R.Descartes,1596-1690)稱其為虛數(shù)(“虛幻數(shù)” imaginary

8、 number),37,2,Bernoulli和Leibniz的爭論 17121713,Bernoulli:負(fù)數(shù)的對數(shù)是實(shí)數(shù),Leibniz :不可能有負(fù)數(shù)的對數(shù),只對正數(shù)成立,3,Euler 在1747年對這場爭論作了中肯的分析,差一常數(shù),1740年,Euler 給Bernoulli的信中說:,和,是同一個(gè)微分方程的解,因此應(yīng)該相等,1743年,發(fā)表了Euler公式,38,Euler 認(rèn)為復(fù)數(shù)僅在想象中存在,1777年,Euler采用 i 代表,5,十九世紀(jì),有三位代表性人物: 柯西(Cauchy,17891857) 維爾斯特拉斯(Weierstrass,18151897) 黎曼(Rieman,18261866),經(jīng)過他們的不懈努力,終于建立了系統(tǒng)的復(fù)變函數(shù)論,4,復(fù)數(shù)真正被接受主要?dú)w功于德國數(shù)學(xué)家高斯(C.F.Gauss,1777-1855), 1799年,他把復(fù)數(shù)的思想融入到對代數(shù)學(xué)基本定理的證明中。,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!