(全國通用版)2019高考數(shù)學二輪復習 專題四 立體幾何 第1講 空間幾何體課件 文.ppt

上傳人:tia****nde 文檔編號:14168239 上傳時間:2020-07-08 格式:PPT 頁數(shù):48 大?。?.21MB
收藏 版權申訴 舉報 下載
(全國通用版)2019高考數(shù)學二輪復習 專題四 立體幾何 第1講 空間幾何體課件 文.ppt_第1頁
第1頁 / 共48頁
(全國通用版)2019高考數(shù)學二輪復習 專題四 立體幾何 第1講 空間幾何體課件 文.ppt_第2頁
第2頁 / 共48頁
(全國通用版)2019高考數(shù)學二輪復習 專題四 立體幾何 第1講 空間幾何體課件 文.ppt_第3頁
第3頁 / 共48頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用版)2019高考數(shù)學二輪復習 專題四 立體幾何 第1講 空間幾何體課件 文.ppt》由會員分享,可在線閱讀,更多相關《(全國通用版)2019高考數(shù)學二輪復習 專題四 立體幾何 第1講 空間幾何體課件 文.ppt(48頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第1講空間幾何體,專題四立體幾何,板塊三專題突破核心考點,,考情考向分析,1.以三視圖為載體,考查空間幾何體面積、體積的計算. 2.考查空間幾何體的側面展開圖及簡單的組合體問題.,,,熱點分類突破,真題押題精練,內(nèi)容索引,熱點分類突破,1.一個物體的三視圖的排列規(guī)則 俯視圖放在正(主)視圖的下面,長度與正(主)視圖的長度一樣,側(左)視圖放在正(主)視圖的右面,高度與正(主)視圖的高度一樣,寬度與俯視圖的寬度一樣.即“長對正、高平齊、寬相等”. 2.由三視圖還原幾何體的步驟 一般先依據(jù)俯視圖確定底面再利用正(主)視圖與側(左)視圖確定幾何體.,,熱點一三視圖與直觀圖,例1(1)(2018全國)

2、中國古建筑借助榫卯將木構件連接起來.構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是,解析,答案,,解析由題意可知帶卯眼的木構件的直觀圖如圖所示,由直觀圖可知其俯視圖應選A.,解析,(2)有一塊多邊形的菜地,它的水平放置的平面圖形的斜二測直觀圖是直角梯形(如圖所示),ABC45,ABAD1,DCBC,則這塊菜地的面積 為________.,答案,解析如圖,在直觀圖中,過點A作AEBC,垂足為點E,,而四邊形AECD為矩形,AD1,,由此可還原原圖形如圖所示.,且ADBC,ABBC,,空

3、間幾何體的三視圖是從空間幾何體的正面、左面、上面用平行投影的方法得到的三個平面投影圖,因此在分析空間幾何體的三視圖問題時,先根據(jù)俯視圖確定幾何體的底面,然后根據(jù)正(主)視圖或側(左)視圖確定幾何體的側棱與側面的特征,調(diào)整實線和虛線所對應的棱、面的位置,再確定幾何體的形狀,即可得到結果.在還原空間幾何體實際形狀時,一般是以正(主)視圖和俯視圖為主,結合側(左)視圖進行綜合考慮.,,答案,解析,跟蹤演練1(1)(2018衡水模擬)已知一幾何體的正(主)視圖、側(左)視圖如圖所示,則該幾何體的俯視圖不可能是,,解析由選項圖可知,選項D對應的幾何體為長方體與三棱柱的組合, 其側(左)視圖中間的線不可視

4、,應為虛線, 故該幾何體的俯視圖不可能是D.,(2)(2018合肥質(zhì)檢)在正方體ABCDA1B1C1D1中,E是棱A1B1的中點,用過點A,C,E的平面截正方體,則位于截面以下部分的幾何體的側(左)視圖為,答案,解析,,解析如圖所示,取B1C1的中點F,,連接EF,AC,AE,CF,則EFAC,平面ACFE, 即為平面ACE截正方體所得的截面, 據(jù)此可得位于截面以下部分的幾何體的側(左)視圖如選項A所示.,,熱點二幾何體的表面積與體積,空間幾何體的表面積和體積計算是高考中常見的一個考點,解決這類問題,首先要熟練掌握各類空間幾何體的表面積和體積計算公式,其次要掌握一定的技巧,如把不規(guī)則幾何體分割

5、成幾個規(guī)則幾何體的技巧,把一個空間幾何體納入一個更大的幾何體中的補形技巧.,例2(1)某幾何體的三視圖如圖所示,則該幾何體的表面積為 A.34 B.44 C.64 D.84,答案,解析,,解析由三視圖可得該幾何體由上下兩部分組成,上部分是半徑為1的四分之一球,下部分是底面圓半徑為1,高為2的半圓柱. 故該幾何體的表面積為,(2)(2018內(nèi)蒙古鄂倫春自治旗模擬)甲、乙兩個幾何體的三視圖如圖所示(單位相同),記甲、乙兩個幾何體的體積分別為V1,V2,則,A.V12V2 B.V12V2 C.V1V2163 D.V1V2173,答案,解析,,解析由甲的三視圖可知,該幾何體為一個正方體中間挖掉一個長方

6、體,正方體的棱長為8,長方體的長為4,寬為4,高為6, 則該幾何體的體積為V183446416; 由乙的三視圖可知,該幾何體是一個底面為正方形,邊長為9,高為9的四棱錐,,V1V2416243173.,(1)求多面體的表面積的基本方法就是逐個計算各個面的面積,然后求和. (2)求簡單幾何體的體積時,若所給的幾何體為柱體、錐體或臺體,則可直接利用公式求解;求組合體的體積時,若所給定的幾何體是組合體,不能直接利用公式求解,常用轉換法、分割法、補形法等進行求解;求以三視圖為背景的幾何體的體積時,應先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.,,跟蹤演練2(1)(2018黑龍江省哈爾濱師范大學附

7、屬中學模擬)已知某幾何體是一個平面將一正方體截去一部分后所得,該幾何體三視圖如圖所示,則該幾何體的表面積為,解析,答案,,解析由三視圖可知,正方體棱長為2,截去部分為三棱錐,作出幾何體的直觀圖如圖所示,,故選B.,答案,(2)(2018孝義模擬)某幾何體的三視圖如圖所示(實線部分),若圖中小正方形的邊長均為1,則該幾何體的體積是,解析,,解析由三視圖可知,該幾何體是由半個圓柱與半個圓錐組合而成,,其中圓柱的底面半徑為2,高為4,圓錐的底面半徑和高均為2,,,熱點三多面體與球,與球有關的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數(shù)量關系,并作

8、出合適的截面圖.如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑.球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.球與旋轉體的組合,通常作它們的軸截面解題,球與多面體的組合,通過多面體的一條側棱和球心(或“切點”“接點”)作出截面圖.,例3(1)(2018百校聯(lián)盟聯(lián)考)在三棱錐PABC中,ABC和PBC均為邊長為3的等邊三角形,且PA ,則三棱錐PABC外接球的體積為,答案,解析,,解析取BC的中點D,連接PD,AD, 因為ABC和PBC均為等邊三角形, 所以ADBC,PDBC,ADPDD, AD,PD平面PAD, 所以BC平面PAD, 因為ABC

9、和PBC均為邊長為3的等邊三角形,,過ABC的外心O1作平面ABC的垂線, 過PBC的外心O2作平面PBC的垂線, 設兩條垂線交于點O, 則O為三棱錐PABC外接球的球心.,(2)(2018衡水金卷信息卷)如圖是某三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為,答案,解析,,解析把此三棱錐嵌入長、寬、高分別為20,24,16的長方體ABCDA1B1C1D1中, 三棱錐BKLJ即為所求的三棱錐, 其中KC19,C1LLB112,B1B16,,則KC1LLB1B,KLB90, 故可求得三棱錐各面面積分別為 SBKL150,SJKL150,SJKB250,SJLB250, 故表面積為S表800.,三棱錐P

10、ABC可通過補形為長方體求解外接球問題的兩種情形 (1)點P可作為長方體上底面的一個頂點,點A,B,C可作為下底面的三個頂點. (2)PABC為正四面體,則正四面體的棱都可作為一個正方體的面對角線.,,跟蹤演練3(1)(2018咸陽模擬)在三棱錐PABC中,PA平面ABC,ABBC,若AB2,BC3,PA4,則該三棱錐的外接球的表面積為 A.13 B.20 C.25 D.29,答案,解析,,解析把三棱錐PABC放到長方體中,如圖所示,,答案,解析,(2)(2018四川成都名校聯(lián)考)已知一個圓錐的側面積是底面積的2倍,記該圓錐的內(nèi)切球的表面積為S1,外接球的表面積為S2,則 等于 A.12 B.

11、13 C.14 D.18,,解析如圖, 由已知圓錐側面積是底面積的2倍, 不妨設底面圓半徑為r,l為底面圓周長,R為母線長,,解得R2r,故ADC30,則DEF為等邊三角形, 設B為DEF的重心,過B作BCDF, 則DB為圓錐的外接球半徑,BC為圓錐的內(nèi)切球半徑,,真題押題精練,1.(2018全國改編)某圓柱的高為2,底面周長為16,其三視圖如右圖.圓柱表面上的點M在正(主)視圖上的對應點為A,圓柱表面上的點N在側(左)視圖上的對應點為B,則在此圓柱側面上,從M到N的路徑中,最短路徑的長度為________.,真題體驗,答案,解析,解析先畫出圓柱的直觀圖,根據(jù)題中的三視圖可知,點M,N的位置如

12、圖所示. 圓柱的側面展開圖及M,N的位置 (N為OP的四等分點)如圖所示,連接MN,則圖中MN即為M到N的最短路徑.,2.(2017北京改編)某四棱錐的三視圖如圖所示,則該四棱錐的最長棱的長度為________.,解析,解析在正方體中還原該四棱錐,如圖所示, 可知SD為該四棱錐的最長棱. 由三視圖可知,正方體的棱長為2,,答案,3.(2017天津)已知一個正方體的所有頂點在一個球面上,若這個正方體 的表面積為18,則這個球的體積為_____.,解析,答案,答案,解析,4.(2017全國)已知三棱錐SABC的所有頂點都在球O的球面上,SC是球O的直徑.若平面SCA平面SCB,SAAC,SBBC,

13、三棱錐SABC的體積為9,則球O的表面積為________.,36,解析如圖,連接OA,OB. 由SAAC,SBBC,SC為球O的直徑知, OASC,OBSC. 由平面SCA平面SCB,平面SCA平面SCBSC, OA平面SCB. 設球O的半徑為r,則 OAOBr,SC2r,,押題預測,答案,解析,押題依據(jù),押題依據(jù)求空間幾何體的表面積或體積是立體幾何的重要內(nèi)容之一,也是高考命題的熱點.此類題常以三視圖為載體,給出幾何體的結構特征,求幾何體的表面積或體積.,1.一個幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積為,,高PD2的四棱錐PABCD, 因為PD平面ABCD,且四邊形ABCD是正方

14、形, 易得BCPC,BAPA,,答案,解析,押題依據(jù),押題依據(jù)靈活運用正三棱錐中線與棱之間的位置關系來解決外接球的相關問題,是高考的熱點.,2.在正三棱錐SABC中,點M是SC的中點,且AMSB,底面邊長AB2 ,則正三棱錐SABC的外接球的表面積為 A.6 B.12 C.32 D.36,,解析因為三棱錐SABC為正三棱錐,所以SBAC, 又AMSB,ACAMA,AC,AM平面SAC, 所以SB平面SAC, 所以SBSA,SBSC,同理SASC,,所以SASBSC2, 所以(2R)232212, 所以球的表面積S4R212,故選B.,解析,押題依據(jù),押題依據(jù)求空間幾何體的體積是立體幾何的重要內(nèi)容之一,也是高考的熱點問題之一,主要是求柱體、錐體、球體或簡單組合體的體積.本題通過球的內(nèi)接圓柱,來考查球與圓柱的體積計算,命題角度新穎,值得關注.,3.已知半徑為1的球O中內(nèi)接一個圓柱,當圓柱的側面積最大時,球的體 積與圓柱的體積的比值為________.,答案,解析如圖所示,設圓柱的底面半徑為r,,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!