《《數(shù)字邏輯設(shè)計(jì)》半期考試試題及參考答案.pdf》由會員分享,可在線閱讀,更多相關(guān)《《數(shù)字邏輯設(shè)計(jì)》半期考試試題及參考答案.pdf(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、電子科技大學(xué) 2013-2014 學(xué)年第二學(xué)期 “數(shù)字邏輯設(shè)計(jì)及應(yīng)用” 課程考試題(半期)( 120 分鐘) 考試日期 2014 年 4 月 27 日 一 二 三 四 五 六 七 八 九 十 總分 評卷教師 I. To fill the answers in the “( )” ( 2’ X 15 = 30 ) 1. Given ?? ABCF )5,4,1( , then ?? ABCF ( 0, 2, 3, 6, 7 ), F = A’? BC ( 1 ) + A? BC ( 0, 1 ). 2. ( 1001 0011 )8421BC
2、D = ( 1111 0011 )2421BCD. 3. ( 0101 1101 )2 = ( 0111 0011 )Gray. 4. Open-drain output has two states, Low and ( Open 或 Hi-Z ). 5. A two’s-complement = 0110 1010, C one’s-complement = 1111 1011, [A-C]two’s-complement = ( 0110 1110 ). Is it overflow for [A-C]two’s-complement? (Yes or No) [ No
3、] 6. XOR gate in positive logic level is equivalent to ( XNOR ) gate in negative logic level. 7. Five variables can make ( 32 ) minterms. The sum of all the minterms must be ( 1 ). 8. If the function ?? ABCF )6,3,2,1( , then ?? ABCF ( 0, 4, 5, 7 ). 9. If the information bits are 1001 0010,
4、 the check bit is ( 0 ) for odd-parity. 10. To make 2014 code-words, ( 11 ) bits should be used at least. 11. Given the circuit shown in Figure 1, its output expression F = (a’b’+a’c’+b’c’ 或 (b(a+c)+ac)’ ). Figure 1 II. There is only one correct answer in the following questions.( 3’ X 10=30
5、) 1. Which of the following codes has the self-complement property? ( D ) A. Gray B. Biquinary C. 8421BCD D. Excess-3 2. Which of the following 2-input gates can form a complete set of logic gates? ( B ) A. OR B. NOR C. XOR D. XNOR 3. Which of the following gates is equivalent to XNOR? ( A
6、 ) A. B. C. D. 4. Which of the following connection is correct? ( C ) A. B. C. D. 5. Which of the following expressions has no hazard? ( B ) A. F=WY+W’Z’+XY’Z B. F=WY+W’Z’+YZ’ C. F=WY+W’Z’+XY’Z+YZ’ D. F=WY+W’Z’+XY’Z+W’XY’ 6. Which of the following statements is correct? ( D ) A.
7、The duality of the minimal sum expression is its minimal product. B. The minimum sum-of-product expression has no static-1 hazard. C. The canonical sum must have hazard. D. The minimum sum-of-product expression has no static-0 hazard. 7. The minimum sum of product for AB+A’C+BCDEFGH is ( A ).
8、A. AB+A’C B. A’B+AC C. AB+A’C+BC D. AB+A’C+BC 8. Given A=(0011 1111 . 0100)2, its equivalent values for A10 and A16 are ( B ) A. (96.58)10, (60.94)16 B. (63.25)10, (3F.4)16 C. (96.58)10, (60.49)16 D. (63.25)10, (3F.94)16 9. Given the timing diagram as shown in Figure 2, the output function is (
9、A ). A. ?? xyzf )7,6,5,3( B. ?? xyzf )4,2,1,0( C. ?? xyzf )6,2,1,0( D. ?? xyzf )7,2,1,0( Figure 2 10. A self-dual logic function is a function such that F=FD. Which of the following functions is self-dual? ( C ) A. ?? xyzF )7,5,2,1( B. F = X’YZ’+XY’Z’+X’Z C. F = XY+XZ+YZ D. )4,3,0( xyzF ?
10、? III. Combinational Circuit Analysis And Design: [40’] 1. Given F(A,B,C,D)= (B⊕ C ⊙ BC)+A’D(BC)’, the constraint condition is A(B+C)=0. Simplify the logic function F(A,B,C,D) into the minimal sum using Karnaugh map, and write out NAND-NAND logic expression of the minimal sum. (8’) 參考評分標(biāo)準(zhǔn)
11、: ( 1) 填寫 F 的卡諾圖正確 得 4 分 , 其中 d 占 1 分 ,錯一格 扣 0.5 分,扣完為止 。 ( 2) 化簡的表達(dá)式正確 得 3 分,錯一個(gè)乘積項(xiàng)扣 1 分 。 Fminimal-sum (A,B,C,D) = B’C’+B’D+C’D ( 3) “與非 -與非 ” 表達(dá)式正確 得 1 分 。 FNAND-NAND (A,B,C,D) = [(B’C’)’(B’D)’(C’D)’]’ 2. A combinational circuit is shown as below. (8’) (1) Write out the sum-of-product expres
12、sion of output F(W,X,Y,Z) for the circuit. (2) Analysis all conditions that the static hazard may exit for the circuit, and indicate types of static hazard. (3) Write out the minimal sum of output F(W,X,Y,Z) for the hazard-free. 參考評分標(biāo)準(zhǔn): ( 1) 表達(dá)式正確 得 3 分 , 只要是 正確的 積之和形式就算對,不管是否為原始積之和 ,錯一 個(gè)( 或 多一個(gè)或少
13、一個(gè))乘積項(xiàng)扣 1 分 ,扣完為止 : F(W,X,Y,Z) = WX’Y’+XY’Z+XY ( 2) 指出所有靜態(tài)冒險(xiǎn) 及 存在的條件 得 2 分, 其中 指出靜態(tài)冒險(xiǎn)類型 1 分 ,具體如下: 當(dāng) W=Z=1, Y=0, X 變化時(shí)( 1 分),存在靜態(tài) 1 冒險(xiǎn)( 0.5 分) 當(dāng) X=Z=1, Y 變化時(shí)( 1 分),存在靜態(tài) 1 冒險(xiǎn)( 0.5 分) ( 只要描述 正確 就得分 ,不一定要畫卡諾圖 。 ) ( 3) 無冒險(xiǎn)的最小和表達(dá)式正確 得 2 分 , 錯一個(gè)( 或 多一個(gè)或少 一個(gè))乘積項(xiàng)扣 0.5 分, 扣完為止 。 F hazard-free (W,X,Y,Z
14、) = WX’Y’+WY’Z+XY+XZ 3. Implement F(U,V,W,X,Y,Z) = ∑U,V,W,X,Y,Z (3,5,7,19,23) using only a 74x138 and a NAND gate. (6’) (1) Write out the canonical sum expression of F(U,V,W,X,Y,Z). (2) Draw the logic diagram. 參考評分標(biāo)準(zhǔn): ( 1) F 的標(biāo)準(zhǔn)和表達(dá)式正確 得 2 分 , 錯一項(xiàng)扣 0.5,扣完為止。 F(U,V,W,X,Y,Z) = U’V’W’X’YZ + U’V
15、’W’XY’Z + U’V’W’XYZ + U’VW’X’YZ + U’VW’XYZ ( 2) 電路圖 輸入正確 得 2 分,輸出正確 得 2 分, 錯一處扣 0.5 分,扣完為止。 【答題提示:從第( 1)小題寫出的表達(dá)式可以看出,公因子是 U’W’Z,因此 有 F(U,V,W,X,Y,Z) = U’W’Z (V’ X’Y+V’XY’+ V’XY+VX’Y+VXY) 】 4. A combinational circuit is shown as below, which contains two 74x148 priority encoder and some gates. In
16、put X9_L has the highest priority, and X0_L has the lowest priority. (8’) (1) List out the truth table for the circuit. (2) Indicate the logic function of the circuit. 參考評分標(biāo)準(zhǔn): ( 1) 真值表正確 得 6 分,錯一 行 扣 1 分,扣完為止。 ( 2) 電路功能描述正確 得 2 分: 8421 BCD 優(yōu)先編碼器 (只寫 BCD,未寫 8421 的扣 1 分)
17、 或者, 寫出 正確的 輸出邏輯表達(dá)式也算正確 : Y3 = X9_L’ + X9_LX8_L’ Y2 = X9_LX8_LX7_L’ + X9_LX8_LX7_LX6_L’ + X9_LX8_LX7_LX6_LX5_L’ + X9_LX8_LX7_LX6_LX5_LX4_L’ Y1 = X9_LX8_LX7_L’ + X9_LX8_LX7_LX6_L’ + X9_LX8_LX7_LX6_LX5_LX4_L X3_L’ + X9_LX8_LX7_LX6_LX5_LX4_L X3_LX2_L’ Y0 = X9_L’ + X9_LX8_LX7_L’ + X9_LX8_LX7_LX6_LX5
18、_L’ + X9_LX8_LX7_LX6_LX5_LX4_L’ + X9_LX8_LX7_LX6_LX5_LX4_L X3_LX2_L X1_L’ 5. Design a converter circuit of Binary code (B3 B2 B1 B0) to Gray code (G3 G2 G1 G0) using only one 74x157 and some gates. Please select B2 as the selection input of 74x157. Please (1) Write out the four logic expressions
19、 of output G3, G2, G1, G0. (2) Draw the logic diagram. (10’) ( 1) 四個(gè)表達(dá)式 正確得 6 分,每錯一個(gè)表達(dá)式扣 1.5 分,扣完為止 。 ( 僅 真值表正確給 2 分,沒有真值表不扣分) B3 B2 B1 B0 G3 G2 G1 G0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0
20、 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 ( 2) 邏輯 電路 圖總分 4 分,根據(jù)實(shí)際解題思路酌情給分。 ( 不用 B2 作為選擇端扣 完 4 分 ) 【答題提示: 從第( 1)小題寫出的表達(dá)式可以得到, 當(dāng) B2 = 0 時(shí), G3 = B3, G2 = B3, G1 = B1, G0 = B1⊕ B0 當(dāng) B2 = 1 時(shí), G3 = B3, G2 = B3’, G1 = B1’, G0 = B1⊕ B0 】 最佳答案 : 或 者: G3 = B3⊕ 0 或 B3 G2 = B3⊕ B2 或 B3’B2 + B3B2’ G1 = B2⊕ B1 或 B2’B1 + B2B1’ G0 = B1⊕ B0 或 B1’B0 + B1B0’ (此答案勉強(qiáng)算對, 但 74x157 未發(fā)揮 實(shí)際 作用) 或者:(還有其他功能正確的解答方法,此處略)