(浙江專(zhuān)用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理與古典概率 3 第3講 二項(xiàng)式定理高效演練分層突破

上傳人:Sc****h 文檔編號(hào):122476264 上傳時(shí)間:2022-07-20 格式:DOC 頁(yè)數(shù):8 大?。?.39MB
收藏 版權(quán)申訴 舉報(bào) 下載
(浙江專(zhuān)用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理與古典概率 3 第3講 二項(xiàng)式定理高效演練分層突破_第1頁(yè)
第1頁(yè) / 共8頁(yè)
(浙江專(zhuān)用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理與古典概率 3 第3講 二項(xiàng)式定理高效演練分層突破_第2頁(yè)
第2頁(yè) / 共8頁(yè)
(浙江專(zhuān)用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理與古典概率 3 第3講 二項(xiàng)式定理高效演練分層突破_第3頁(yè)
第3頁(yè) / 共8頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(浙江專(zhuān)用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理與古典概率 3 第3講 二項(xiàng)式定理高效演練分層突破》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專(zhuān)用)2021版新高考數(shù)學(xué)一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理與古典概率 3 第3講 二項(xiàng)式定理高效演練分層突破(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第3講 二項(xiàng)式定理 [基礎(chǔ)題組練] 1.(2020·金華十校期末調(diào)研)在(x2-4)5的展開(kāi)式中,含x6的項(xiàng)的系數(shù)為(  ) A.20            B.40 C.80 D.160 解析:選D.Tr+1=C(x2)5-r(-4)r=(-4)rCx10-2r, 令10-2r=6,解得r=2, 所以含x6的項(xiàng)的系數(shù)為(-4)2C=160. 2.(2020·臺(tái)州高三期末考試)已知在(-)n的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng),則n=(  ) A.9 B.8 C.7 D.6 解析:選D.因?yàn)榈?項(xiàng)為常數(shù)項(xiàng),由C()n-5(-)5=-()n-5C·xn-6,可得n-6=0

2、,解得n=6.故選D. 3.(2020·溫州市普通高中???在的展開(kāi)式中,各項(xiàng)系數(shù)和與二項(xiàng)式系數(shù)和之比為64,則x3的系數(shù)為(  ) A.15 B.45 C.135 D.405 解析:選C.由題意=64,n=6,Tr+1=Cx6-r=3rCx6-,令6-=3,r=2,32C=135. 4.(2020·湖州市高三期末考試)若(x+)(2x-)5的展開(kāi)式中各項(xiàng)系數(shù)的和為2,則該展開(kāi)式中常數(shù)項(xiàng)是(  ) A.-40 B.-20 C.40 D.20 解析:選C.令x=1,(1+a)×(2-1)5=2,解得a=1. 所以(2x-)5的通項(xiàng)公式 Tr+1=C(2x)5-

3、r(-)r=(-1)r25-rCx5-2r, 令5-2r=-1,5-2r=1. 解得r=3或2. 所以該展開(kāi)式中常數(shù)項(xiàng)=(-1)322C+(-1)2×23C=40. 5.(x2-x+1)10的展開(kāi)式中x3項(xiàng)的系數(shù)為(  ) A.-210 B.210 C.30 D.-30 解析:選A.(x2-x+1)10=[x2-(x-1)]10=C(x2)10-C(x2)9(x-1)+…-Cx2(x-1)9+C(x-1)10, 所以含x3項(xiàng)的系數(shù)為:-CC+C(-C)=-210. 6.(x2+x+y)5的展開(kāi)式中x5y2的系數(shù)為(  ) A.10 B.20 C.30 D.

4、60 解析:選C.(x2+x+y)5的展開(kāi)式的通項(xiàng)為T(mén)r+1=C(x2+x)5-r·yr,令r=2,則T3=C(x2+x)3y2,又(x2+x)3的展開(kāi)式的通項(xiàng)為C(x2)3-k·xk=Cx6-k,令6-k=5,則k=1,所以(x2+x+y)5的展開(kāi)式中,x5y2的系數(shù)為CC=30,故選C. 7.已知(ax+b)6的展開(kāi)式中x4項(xiàng)的系數(shù)與x5項(xiàng)的系數(shù)分別為135與-18,則(ax+b)6的展開(kāi)式中所有項(xiàng)系數(shù)之和為(  ) A.-1 B.1 C.32 D.64 解析:選D.由二項(xiàng)展開(kāi)式的通項(xiàng)公式可知x4項(xiàng)的系數(shù)為Ca4b2,x5項(xiàng)的系數(shù)為Ca5b,則由題意可得,解得a+b=±2

5、,故(ax+b)6的展開(kāi)式中所有項(xiàng)的系數(shù)之和為(a+b)6=64,選D. 8.在(1+x)6(1+y)4的展開(kāi)式中,記xmyn項(xiàng)的系數(shù)為f(m,n),則f(3,0)+f(2,1)+f(1,2)+f(0,3)=(  ) A.45 B.60 C.120 D.210 解析:選C.因?yàn)閒(m,n)=CC,所以f(3,0)+f(2,1)+f(1,2)+f(0,3)=CC+CC+CC+CC=120. 9.(2020·義烏調(diào)研測(cè)試)若(x2-a)的展開(kāi)式中x6的系數(shù)為30,則a等于(  ) A. B. C.1 D.2 解析:選D.因?yàn)檎归_(kāi)式的通項(xiàng)公式為T(mén)r+1=Cx10-r·

6、=Cx10-2r,所以(x2-a)的展開(kāi)式中含x6的項(xiàng)為x2·Cx4-aCx6=(C-aC)x6,則C-aC=30,解得a=2,故選D. 10.(2020·臺(tái)州模擬)(x+2y)7的展開(kāi)式中,系數(shù)最大的項(xiàng)是(  ) A.68y7 B.112x3y4 C.672x2y5 D.1 344x2y5 解析:選C.設(shè)第r+1項(xiàng)系數(shù)最大, 則有 即 即解得 又因?yàn)閞∈Z,所以r=5.所以系數(shù)最大的項(xiàng)為T(mén)6=Cx2·25y5=672x2y5.故選C. 11.(2020·金華市東陽(yáng)二中高三調(diào)研)在二項(xiàng)式的展開(kāi)式中恰好第5項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中含x2項(xiàng)的系數(shù)是________.

7、 解析:因?yàn)樵诙?xiàng)式的展開(kāi)式中恰好第5項(xiàng)的二項(xiàng)式系數(shù)最大,所以n=8, 展開(kāi)式的通項(xiàng)公式為T(mén)r+1=C·(-1)r·x8-2r, 令8-2r=2,則r=3,所以展開(kāi)式中含x2項(xiàng)的系數(shù)是-C=-56. 答案:-56 12.(2020·溫州中學(xué)高三???已知(1+x+x2)(n∈N*)的展開(kāi)式中沒(méi)有常數(shù)項(xiàng),且2≤n≤8,則n=________. 解析:因?yàn)榈耐?xiàng)公式為T(mén)r+1=Cxn-r·x-3r=Cxn-4r,故當(dāng)n-4r=0,-1,-2時(shí)存在常數(shù)項(xiàng),即n=4r,4r-1,4r-2,故n=2,3,4,6,7,8時(shí)為常數(shù)項(xiàng),所以當(dāng)n=5時(shí)沒(méi)有常數(shù)項(xiàng)符合題設(shè). 答案:5 13.若直線

8、x+ay-1=0與2x-y+5=0垂直,則二項(xiàng)式的展開(kāi)式中x4的系數(shù)為_(kāi)_______. 解析:由兩條直線垂直,得1×2+a×(-1)=0,得a=2,所以二項(xiàng)式為,其通項(xiàng)公式Tr+1=C(2x2)5-r·=(-1)r25-rCx10-3r,令10-3r=4,解得r=2,所以二項(xiàng)式的展開(kāi)式中x4的系數(shù)為23C=80. 答案:80 14.已知(1+x)5的展開(kāi)式中xr(r∈Z且-1≤r≤5)的系數(shù)為0,則r=________. 解析:依題意,(1+x)5的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=Cxr,故展開(kāi)式為(x5+5x4+10x3+10x2+5x+1),故可知展開(kāi)式中x2的系數(shù)為0,故r=2.

9、 答案:2 15.(2020·杭州市高考模擬)若(2x-)n的展開(kāi)式中所有二項(xiàng)式系數(shù)和為64,則n=________;展開(kāi)式中的常數(shù)項(xiàng)是________. 解析:因?yàn)?2x-)n的展開(kāi)式中所有二項(xiàng)式系數(shù)和為2n=64,則n=6;根據(jù)(2x-)n=(2x-)6的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=C·(-1)r·(2x)6-r·x-2r=C·(-1)r·26-r·x6-3r, 令6-3r=0,求得r=2,可得展開(kāi)式中的常數(shù)項(xiàng)是C·24=240. 答案:6 240 16.(2020·浙江東陽(yáng)中學(xué)高三檢測(cè))已知(1-2x)7=a0+a1x+a2x2+…+a7x7,則a0=________;(a0+

10、a2+a4+a6)2-(a1+a3+a5+a7)2=________. 解析:由(1-2x)7=a0+a1x+a2x2+…+a7x7, 觀察:可令x=0得:(1-2×0)7=a0+a1×0+…+a7×0=1,a0=1. (a0+a2+a4+a6)2-(a1+a3+a5+a7)2=(a0+a1+…+a7)[a0+a2+a4+a6-(a1+a3+a5+a7)], 則可令x=1得: (1-2×1)7=a0+a1+a2+…+a7=-1, 再可令x=-1得: (1+2×1)7=a0-a1+a2-a3+…-a7=37=2 187, 可得:(a0+a2+a4+a6)2-(a1+a3+a5+a

11、7)2 =-1×2 187=-2 187. 答案:1?。? 187 17.設(shè)f(x)是(x2+)6展開(kāi)式中的中間項(xiàng),若f(x)≤mx在區(qū)間[,]上恒成立,則實(shí)數(shù)m的取值范圍是________. 解析:(x2+)6的展開(kāi)式中的中間項(xiàng)為第四項(xiàng),即f(x)=C(x2)3()3=x3,因?yàn)閒(x)≤mx在區(qū)間[,]上恒成立,所以m≥x2在[,]上恒成立,所以m≥(x2)max=5,所以實(shí)數(shù)m的取值范圍是 [5,+∞). 答案:[5,+∞) [綜合題組練] 1.C+C+…+C+…+C(n∈N*)的值為(  ) A.2n B.22n-1 C.2n-1 D.22n-1-1 解析

12、:選D.(1+x)2n=C+Cx+Cx2+Cx3+…+Cx2n. 令x=1,得C+C+C+…+C+C=22n; 再令x=-1,得C-C+C-…+(-1)rC+…-C+C=0. 兩式相加,可得C+C+…+C=-1=22n-1-1. 2.(2020·杭州七校聯(lián)考)若(x+y)9按x的降冪排列的展開(kāi)式中,第二項(xiàng)不大于第三項(xiàng),且x+y=1,xy<0,則x的取值范圍是(  ) A. B. C. D.(1,+∞) 解析:選D.二項(xiàng)式(x+y)9的展開(kāi)式的通項(xiàng)是 Tr+1=C·x9-r·yr. 依題意,有 由此得 解得x>1,即x的取值范圍為(1,+∞). 3.若的展開(kāi)式中前

13、三項(xiàng)的系數(shù)分別為A,B,C,且滿(mǎn)足4A=9(C-B),則展開(kāi)式為x2的系數(shù)為_(kāi)_______. 解析:易得A=1,B=,C==,所以有4=9,即n2-7n-8=0,解得n=8或n=-1(舍).在中,因?yàn)橥?xiàng)Tr+1=Cx8-r=·x8-2r,令8-2r=2,得r=3,所以展開(kāi)式中x2的系數(shù)為. 答案: 4.已知(xtan θ+1)5的展開(kāi)式中x2的系數(shù)與的展開(kāi)式中x3的系數(shù)相等,則tan θ=________. 解析:的通項(xiàng)為T(mén)r+1=C·x4-r·,令4-r=3,則r=1,所以的展開(kāi)式中x3的系數(shù)是C·=5,(xtan θ+1)5的通項(xiàng)為T(mén)R+1=C·(xtan θ)5-R,令5-R

14、=2,得R=3,所以(xtan θ+1)5的展開(kāi)式中x2的系數(shù)是C·tan2θ=5,所以tan2θ=,所以tan θ=±. 答案:± 5.(2020·臺(tái)州市書(shū)生中學(xué)高三期中)設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n. (1)當(dāng)m=n=5時(shí),若f(x)=a5(1-x)5+a4(1-x)4+…+a1(1-x)+a0,求a0+a2+a4的值; (2)f(x)展開(kāi)式中x的系數(shù)是9,當(dāng)m,n變化時(shí),求x2系數(shù)的最小值. 解:(1)當(dāng)m=n=5時(shí),f(x)=2(1+x)5, 令x=0,則f(0)=a5+a4+…+a1+a0=2, 令x=2,則f(2)=-a5+a4-…-a1+a0=

15、2×35, 所以a0+a2+a4==35+1=244. (2)由題意得f(x)展開(kāi)式中x的系數(shù)是 C+C=m+n=9, x2系數(shù)為C+C=+==, 又==, 因?yàn)閙,n∈N,所以當(dāng)m=4或m=5時(shí)最小,最小值為16. 6.(2020·金麗衢十二校聯(lián)考)已知. (1)若展開(kāi)式中第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大項(xiàng)的系數(shù); (2)若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開(kāi)式中系數(shù)最大的項(xiàng). 解:(1)通項(xiàng)Tr+1=C·(2x)r=22r-nCxr, 由題意知C,C,C成等差數(shù)列, 所以2C=C+C,所以n=14或7. 當(dāng)n=14時(shí),第8項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)的系數(shù)為22×7-14C=3 432; 當(dāng)n=7時(shí),第4、5項(xiàng)的二項(xiàng)式系數(shù)相等且最大, 其系數(shù)分別為22×3-7C=,22×4-7C=70. (2)由題意知C+C+C=79, 所以n=12或n=-13(舍). 所以Tr+1=22r-12Cxr. 由得所以r=10. 所以展開(kāi)式中系數(shù)最大的項(xiàng)為T(mén)11=22×10-12·Cx10=(2x)10. 8

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!