《(魯京津瓊專(zhuān)用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 專(zhuān)題6 數(shù)列 第39練 等比數(shù)列練習(xí)(含解析)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(魯京津瓊專(zhuān)用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 專(zhuān)題6 數(shù)列 第39練 等比數(shù)列練習(xí)(含解析)(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第39練 等比數(shù)列基礎(chǔ)保分練1若數(shù)列an是等比數(shù)列,下列命題中正確的個(gè)數(shù)為()a,a2n均為等比數(shù)列;lnan成等差數(shù)列;,|an|成等比數(shù)列;can,ank均為等比數(shù)列A4B3C2D12公差不為零的等差數(shù)列an的前n項(xiàng)和為Sn,若a4是a3與a7的等比中項(xiàng),S816,則S10等于()A30B24C18D603已知等比數(shù)列an的各項(xiàng)都是正數(shù),且3a1,a3,2a2成等差數(shù)列,則等于()A6B7C8D94已知等比數(shù)列an中,a2a3a41,a6a7a864,則a5等于()A2B2C2D45已知數(shù)列an滿(mǎn)足:an1an1(nN*,R且0),若數(shù)列an1是等比數(shù)列,則的值等于()A1B1C.D26已
2、知數(shù)列an為等比數(shù)列,且a2a3a4a64,則tan等于()AB.CD7已知等比數(shù)列an的前n項(xiàng)和為Sn,則下列判斷一定正確的是()A若S30,則a20180B若S30,則a2018a1,則a2019a2018D若,則a20190,b0,若是4a與2b的等比中項(xiàng),則的最小值為()A2B8C9D102已知an是等比數(shù)列,a22,a5,則a1a2a2a3anan1等于()A16(14n) B6(12n)C.(14n) D.(12n)3已知數(shù)列an中,a11,an12an1(nN*),Sn為其前n項(xiàng)和,則S5的值為()A63B61C62D574等比數(shù)列an中,a1512,公比q,用Tn表示它的前n項(xiàng)
3、之積Tna1a2an,則Tn中最大的是()AT11BT10CT9DT85設(shè)正項(xiàng)等比數(shù)列an的前n項(xiàng)和為Sn,若S9S73(a4a5),則9a2的最小值為_(kāi)6設(shè)Sn為數(shù)列an的前n項(xiàng)和,2anan132n1(n2)且3a12a2,則Snan_.答案精析基礎(chǔ)保分練1C2.A3.D4.C5.D6.A7.D8A9.510.3n1能力提升練1C因?yàn)槭?a與2b的等比中項(xiàng),所以24a2b22a2b22ab,2ab1,所以(2ab)5529.當(dāng)且僅當(dāng)ab時(shí)取等號(hào)故選C.2C等比數(shù)列an中,a22,a5,解得a14,q,anan18,anan1是以8為首項(xiàng),為公比的等比數(shù)列,a1a2a2a3anan1.3D由
4、數(shù)列的遞推關(guān)系可得,an112(an1),a112,據(jù)此可得,數(shù)列an1是首項(xiàng)為2,公比為2的等比數(shù)列,則an122n1,an2n1,分組求和得S5557.4C在等比數(shù)列an中,a1512,公比q,an512n1,則|an|512n1.令|an|1,得n10,|Tn|最大值在n9或10時(shí)取到,n10時(shí),|an|1,n越大,會(huì)使|Tn|越小n為偶數(shù)時(shí),an為負(fù),n為奇數(shù)時(shí),an為正Tna1a2an,Tn的最大值要么是T10,要么是T9.T10中有奇數(shù)個(gè)小于零的項(xiàng),即a2,a4,a6,a8,a10,則T100,而T9中有偶數(shù)個(gè)項(xiàng)小于零,即a2,a4,a6,a8,故T9最大56解析設(shè)正項(xiàng)等比數(shù)列an的公比為q0,S9S73(a4a5),a8a93(a4a5),(q4q5)a43(1q)a4,q4q53(1q),可得q43,則9a2226,當(dāng)且僅當(dāng)9a2,即q43時(shí)取等號(hào)632n解析由2anan132n1(n2),得,1,由2anan132n1(n2),且3a12a2,可得2a2a16,即2a16,a13.數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,則1n12n1,an2n(212n1)21n2n,Sn(222232n)22n21n.Snan32n.5