(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練26 圓錐曲線中的定點(diǎn)、定值與存在性問(wèn)題 理

上傳人:Sc****h 文檔編號(hào):119146392 上傳時(shí)間:2022-07-13 格式:DOCX 頁(yè)數(shù):14 大?。?.32MB
收藏 版權(quán)申訴 舉報(bào) 下載
(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練26 圓錐曲線中的定點(diǎn)、定值與存在性問(wèn)題 理_第1頁(yè)
第1頁(yè) / 共14頁(yè)
(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練26 圓錐曲線中的定點(diǎn)、定值與存在性問(wèn)題 理_第2頁(yè)
第2頁(yè) / 共14頁(yè)
(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練26 圓錐曲線中的定點(diǎn)、定值與存在性問(wèn)題 理_第3頁(yè)
第3頁(yè) / 共14頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練26 圓錐曲線中的定點(diǎn)、定值與存在性問(wèn)題 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練26 圓錐曲線中的定點(diǎn)、定值與存在性問(wèn)題 理(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、專題突破練26 圓錐曲線中的定點(diǎn)、定值與存在性問(wèn)題 1.(2019北京房山區(qū)高三第一次模擬測(cè)試)已知橢圓x24+y23=1,過(guò)坐標(biāo)原點(diǎn)O做兩條互相垂直的射線,與橢圓分別交于M,N兩點(diǎn). (1)求橢圓的離心率; (2)求證:點(diǎn)O到直線MN的距離為定值. 2.(2019遼寧丹東高三總復(fù)習(xí)質(zhì)量測(cè)試一)已知離心率為2的雙曲線C的一個(gè)焦點(diǎn)F(c,0)到一條漸近線的距離為3. (1)求雙曲線C的方程; (2)設(shè)A1,A2分別為C的左、右頂點(diǎn),P為C異于A1,A2的一點(diǎn),直線A1P與A2P分別交y軸于M,N兩點(diǎn),求證:以線段MN為直

2、徑的圓D經(jīng)過(guò)兩個(gè)定點(diǎn). 3. (2019山東日照高三5月校際聯(lián)合考試)如圖,已知橢圓E:x2a2+y2b2=1(a>b>0),A(4,0)是長(zhǎng)軸的一個(gè)端點(diǎn),弦BC過(guò)橢圓的中心O,且cos=21313,|OC-OB|=2|BC-BA|. (1)求橢圓E的方程. (2)過(guò)橢圓E右焦點(diǎn)F的直線,交橢圓E于A1,B1兩點(diǎn),交直線x=8于點(diǎn)M,判定直線CA1,CM,CB1的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說(shuō)明理由. 4.(2019江西新八校高三第二次聯(lián)考)已

3、知橢圓C:x2a2+y2b2=1(a>b>0),c=3,左、右焦點(diǎn)為F1,F2,點(diǎn)P,A,B在橢圓C上,且點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱,直線PA,PB的斜率的乘積為-14. (1)求橢圓C的方程; (2)已知直線l經(jīng)過(guò)點(diǎn)Q(2,2),且與橢圓C交于不同的兩點(diǎn)M,N,若|QM||QN|=163,判斷直線l的斜率是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由. 5.(2019山東青島高考模擬檢測(cè))已知O為坐標(biāo)原點(diǎn),點(diǎn)F1(-2,0),F2(2,0),S(32,0),動(dòng)點(diǎn)N滿足|NF1|+|NS|=43,點(diǎn)P為線段NF1的中點(diǎn),拋物線C:x2=2my(m

4、>0)上點(diǎn)A的縱坐標(biāo)為6,OA·OS=66. (1)求動(dòng)點(diǎn)P的軌跡曲線W的標(biāo)準(zhǔn)方程及拋物線C的標(biāo)準(zhǔn)方程; (2)若拋物線C的準(zhǔn)線上一點(diǎn)Q滿足OP⊥OQ,試判斷1|OP|2+1|OQ|2是否為定值?若是,求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由. 6.(2019河南重點(diǎn)高中高三4月聯(lián)合質(zhì)量檢測(cè))已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:x2a2+y2b2=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,通徑長(zhǎng)(即過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線與橢圓C相交所得的弦長(zhǎng))為3,短半軸長(zhǎng)為3. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)過(guò)點(diǎn)F1的直線l與橢圓C相交于E,D兩點(diǎn),線段ED上存在

5、一點(diǎn)I到F2E,F2D兩邊的距離相等,若(F2D-ID)·F2E|F2I|·|F2E|<22,問(wèn)直線l的斜率是否存在?若存在,求直線l的斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由. 參考答案 專題突破練26 圓錐曲線中 的定點(diǎn)、定值與存在性問(wèn)題 1.(1)解由橢圓的方程x24+y23=1,可得a=2,b=3,∴c2=a2-b2=1. ∴橢圓的離心率e=ca=12. (2)證明當(dāng)直線MN的斜率不存在時(shí),∠MON=90°,不妨設(shè)M(x0,x0),則有N(x0,-x0). 又M,N兩點(diǎn)在橢圓上,∴x024+x023=1,∴x02=1

6、27. ∴點(diǎn)O到直線MN的距離d=127=2217. 當(dāng)直線MN的斜率存在時(shí),設(shè)直線MN的方程為y=kx+m. 由y=kx+m,x24+y23=1,消去y得(3+4k2)x2+8kmx+4m2-12=0,則Δ=(8km)2-4(3+4k2)(4m2-12)>0. 設(shè)M(x1,y1),N(x2,y2). ∴x1+x2=-8km3+4k2,x1x2=4m2-123+4k2. ∵OM⊥ON,∴x1x2+y1y2=0. ∴x1x2+(kx1+m)(kx2+m)=0. 即(k2+1)x1x2+km(x1+x2)+m2=0. ∴(k2+1)·4m2-123+4k2-8k2m23+4k2+

7、m2=0. 整理得7m2=12(k2+1),滿足Δ>0, ∴點(diǎn)O到直線MN的距離d=|m|k2+1=127=2217. 綜上所述,點(diǎn)O到直線MN的距離為定值2217. 2.(1)解設(shè)C:x2a2-y2b2=1(a>0,b>0), 因?yàn)殡x心率為2,所以c=2a,b=3a. 所以C的漸近線為3x±y=0, 不妨取其中一條3x+y=0. 由3=|3c-0|(3)2+12,得c=2. 于是a=1,b=3, 故雙曲線C的方程為x2-y23=1. (2)證明設(shè)P(x0,y0)(x0≠±1),因?yàn)锳1(-1,0),A2(1,0), 可得直線A1P與A2P的方程分別為y=y0x0+1(

8、x+1),y=y0x0-1(x-1). 由題設(shè),所以M0,y0x0+1,N0,-y0x0-1,|MN|=2x0y0x02-1,MN中點(diǎn)坐標(biāo)0,y01-x02,于是圓D的方程為x2+y-y01-x022=x02y02(x02-1)2. 因?yàn)閤02-y023=1,所以圓D的方程可化為x2+y2+6y0y-3=0. 當(dāng)y=0時(shí),x=±3,因此D經(jīng)過(guò)兩個(gè)定點(diǎn)(-3,0)和(3,0). 3.解(1)由|OC-OB|=2|BC-BA|,得|BC|=2|AC|,即|OC|=|AC|, 所以△AOC是等腰三角形. 又a=|OA|=4,故點(diǎn)C的橫坐標(biāo)為2. 又cos=21313,

9、設(shè)點(diǎn)C的縱坐標(biāo)為yC,OA=(4,0),CA=(2,-yC) 4×24yC2+22=21313,解得yC=±3,應(yīng)取C(2,3), 又點(diǎn)C在橢圓上,∴2242+32b2=1,解得b2=12. ∴所求橢圓的方程為x216+y212=1. (2)由題意知橢圓的右焦點(diǎn)為F(2,0),C(2,3),由題意可知直線CA1,CM,CB1的斜率存在,設(shè)直線A1B1的方程為y=k(x-2),代入橢圓x216+y212=1并整理,得(3+4k2)x2-16k2x+16k2-48=0. 設(shè)A1(x1,y1),B1(x2,y2),直線CA1,CM,CB1的斜率分別為k1,k2,k3,則有x1+x2=16k

10、23+4k2,x1x2=16k2-483+4k2. 可知M的坐標(biāo)為M(8,6k). ∴k1+k3=y1-3x1-2+y2-3x2-2 =k(x1-2)-3x1-2+k(x2-2)-3x2-2 =2k-3·x1+x2-4x1x2+4-2(x1+x2) =2k-1. 又2k2=2·6k-38-2=2k-1, ∴k1+k3=2k2. 即直線CA1,CM,CB1的斜率成等差數(shù)列. 4.解(1)設(shè)A(x1,y1),P(x2,y2),則B(-x1,-y1). 點(diǎn)A,P在橢圓上,有x12a2+y12b2=1,x22a2+y22b2=1. 兩式作差,整理得x12-x22a2+y12-y2

11、2b2=0. 則y12-y22x12-x22=-b2a2. kPA·kPB=y1-y2x1-x2·-y1-y2-x1-x2=y12-y22x12-x22=-b2a2=-14. 又c=3,a2=b2+c2,可得a2=4,b2=1,c2=3. ∴橢圓C的方程為x24+y2=1. (2)由題意知直線l存在斜率.設(shè)直線l的方程為y-2=k(x-2), 將其代入x24+y2=1,整理可得(1+4k2)x2+16k(1-k)x+16(1-k)2-4=0,則Δ=[16k(1-k)]2-4(1+4k2)[16(1-k)2-4]>0,得k>38. 設(shè)M(x1,y1),N(x2,y2),則x1+x2

12、=16k(k-1)1+4k2,x1x2=16(1-k)2-41+4k2=4(4k2-8k+3)1+4k2. ∵|QM||QN|=163,且=0, ∴QM·QN=163. ∵QM=(x1-2,y1-2),QN=(x2-2,y2-2), ∴(x1-2)(x2-2)+(y1-2)(y2-2)=163. ∵y1=k(x1-2)+2,y2=k(x2-2)+2, ∴(x1-2)(x2-2)+(y1-2)(y2-2)=(x1-2)(x2-2)(1+k2)=[x1x2-2(x1+x2)+4](1+k2)=163. ∴4(4k2-8k+3)1+4k2-2×16k(k-1)1+4k2+

13、4(1+k2)=163. 化簡(jiǎn)得16(1+k2)1+4k2=163,解得k2=2. ∵k>38,∴k=2. ∴直線l的斜率為定值2. 5.解(1)由題知|PF2|=|NS|2,|PF1|=|NF1|2, 所以|PF1|+|PF2|=|NF1|+|NF2|2=23>|F1F2|, 因此動(dòng)點(diǎn)P的軌跡W是以F1,F2為焦點(diǎn)的橢圓,又知2a=23,2c=22, 所以曲線W的標(biāo)準(zhǔn)方程為x23+y2=1. 又由題知A(xA,6),所以O(shè)A·OS=(xA,6)·(32,0)=32xA=66,所以xA=23. 又因?yàn)辄c(diǎn)A(23,6)在拋物線C上,所以m=6,所以拋物線C的標(biāo)準(zhǔn)方程為x2=26

14、y. (2)設(shè)P(xP,yP),QxQ,-62, 由題知OP⊥OQ,所以xPxQ-6yP2=0,即xQ=6yP2xP(xP≠0), 所以1|OP|2+1|OQ|2=1xP2+yP2+13yP22xP2+32=3+2xP23(xP2+yP2). 又因?yàn)閤P23+yP2=1,yP2=1-xP23, 所以3+2xP23(xP2+yP2)=3+2xP23(xP2+1-xP23)=1. 所以1|OP|2+1|OQ|2為定值,且定值為1. 6.解(1)因?yàn)槎贪胼S長(zhǎng)為3,所以b=3. 設(shè)橢圓C:x2a2+y2b2=1(a>b>0)的半焦距為c. 由題意,得c2a2+y2b2=1,解得y=±

15、b2a. 由通徑長(zhǎng)為3,得2b2a=3,即2×(3)2a=3,解得a=2. 所以橢圓C的標(biāo)準(zhǔn)方程為x24+y23=1. (2)由(1)得,橢圓C的標(biāo)準(zhǔn)方程為x24+y23=1. 因?yàn)辄c(diǎn)I到F2E,F2D兩邊的距離相等,所以由角平分線定理,得F2I是∠DF2E的角平分線. 由(F2D-ID)·F2E|F2I|·|F2E|<22, 得F2I·F2E|F2I|·|F2E|<22, 即cos∠EF2I<22,則∠EF2I>45°. 所以∠DF2E=2∠EF2I>90°. 所以F2D·F2E<0. 易知左、右焦點(diǎn)F1,F2的坐標(biāo)分別為(-1,0),(1,0), 當(dāng)直線l的斜率存在時(shí)

16、,設(shè)為k,則直線l的方程為y=k(x+1)(k≠0). 設(shè)點(diǎn)E(x1,y1),D(x2,y2). 聯(lián)立y=k(x+1),x24+y23=1,得(4k2+3)x2+8k2x+4k2-12=0,則Δ=(8k2)2-4(4k2+3)(4k2-12)=144k2+144>0恒成立. x1+x2=-8k24k2+3,x1x2=4k2-124k2+3. 又y1y2=k(x1+1)·k(x2+1)=k2(x1x2+x1+x2+1)=k24k2-124k2+3-8k24k2+3+1=-9k24k2+3, 所以F2D·F2E=(x2-1,y2)·(x1-1,y1)=x1x2-(x1+x2)+1+y1y2<0. 所以4k2-124k2+3--8k24k2+3+1+-9k24k2+3<0, 化簡(jiǎn)得7k2-94k2+3<0, 所以7k2-9<0,解得-3770,不符合題意,所以舍去. 綜上,直線l的斜率存在,且直線l的斜率的取值范圍是-377,0∪0,377. 14

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!