(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 第7講 離散型隨機(jī)變量及其分布列練習(xí)(含解析)

上傳人:Sc****h 文檔編號:119145059 上傳時間:2022-07-13 格式:DOC 頁數(shù):7 大小:2.40MB
收藏 版權(quán)申訴 舉報 下載
(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 第7講 離散型隨機(jī)變量及其分布列練習(xí)(含解析)_第1頁
第1頁 / 共7頁
(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 第7講 離散型隨機(jī)變量及其分布列練習(xí)(含解析)_第2頁
第2頁 / 共7頁
(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 第7講 離散型隨機(jī)變量及其分布列練習(xí)(含解析)_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 第7講 離散型隨機(jī)變量及其分布列練習(xí)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十二章 概率、隨機(jī)變量及其分布 第7講 離散型隨機(jī)變量及其分布列練習(xí)(含解析)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第7講 離散型隨機(jī)變量及其分布列 一、選擇題 1.某射手射擊所得環(huán)數(shù)X的分布列為 X 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 則此射手“射擊一次命中環(huán)數(shù)大于7”的概率為(  ) A.0.28 B.0.88 C.0.79 D.0.51 解析 P(X>7)=P(X=8)+P(X=9)+P(X=10) =0.28+0.29+0.22=0.79. 答案 C 2.設(shè)X是一個離散型隨機(jī)變量,其分布列為: X -1 0 1 P 2-3q q2 則q的值為(  )

2、A.1 B.± C.- D.+ 解析 由分布列的性質(zhì)知 解得q=-. 答案 C 3.設(shè)某項試驗的成功率是失敗率的2倍,用隨機(jī)變量X去描述1次試驗的成功次數(shù),則P(X=0)等于(  ) A.0 B. C. D. 解析 由已知得X的所有可能取值為0,1, 且P(X=1)=2P(X=0),由P(X=1)+P(X=0)=1, 得P(X=0)=. 答案 C 4.袋中裝有10個紅球、5個黑球.每次隨機(jī)抽取1個球后,若取得黑球則另換1個紅球放回袋中,直到取到紅球為止.若抽取的次數(shù)為ξ,則表示“放回5個紅球”事件的是(  ) A.ξ=4 B.ξ=5 C.ξ=

3、6 D.ξ≤5 解析 “放回五個紅球”表示前五次摸到黑球,第六次摸到紅球,故ξ=6. 答案 C 5.從裝有3個白球、4個紅球的箱子中,隨機(jī)取出了3個球,恰好是2個白球、1個紅球的概率是(  ) A. B. C. D. 解析 如果將白球視為合格品,紅球視為不合格品,則這是一個超幾何分布問題,故所求概率為P==. 答案 C 二、填空題 6.設(shè)離散型隨機(jī)變量X的分布列為 X 0 1 2 3 4 P 0.2 0.1 0.1 0.3 M 若隨機(jī)變量Y=|X-2|,則P(Y=2)=________. 解析 由分布列的性質(zhì),知 0.2+0.1+

4、0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5. 答案 0.5 7.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設(shè)得分為隨機(jī)變量X,則P(X≤6)=________. 解析 P(X≤6)=P(取到3只紅球1只黑球)+P(取到4只紅球)=+=. 答案  8.在一個口袋中裝有黑、白兩個球,從中隨機(jī)取一球,記下它的顏色,然后放回,再取一球,又記下它的顏色,寫出這兩次取出白球數(shù)η的分布列為________. 解析

5、 η的所有可能值為0,1,2. P(η=0)==, P(η=1)==, P(η=2)==. ∴η的分布列為 η 0 1 2 P 答案  η 0 1 2 P 三、解答題 9.(2017·成都診斷)某高校一專業(yè)在一次自主招生中,對20名已經(jīng)選拔入圍的學(xué)生進(jìn)行語言表達(dá)能力和邏輯思維能力測試,結(jié)果如下表: 由于部分?jǐn)?shù)據(jù)丟失,只知道從這20名參加測試的學(xué)生中隨機(jī)抽取一人,抽到語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生的概率為. (1)從參加測試的語言表達(dá)能力良好的學(xué)生中任意抽取2名,求其中至少有一名邏輯思維能力優(yōu)秀的學(xué)生的概率; (2)從

6、參加測試的20名學(xué)生中任意抽取2名,設(shè)語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為X,求隨機(jī)變量X的分布列. 解 (1)用A表示“從這20名參加測試的學(xué)生中隨機(jī)抽取一人,抽到語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生”, ∵語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生共有(6+n)名, ∴P(A)==,解得n=2,∴m=4, 用B表示“從參加測試的語言表達(dá)能力良好的學(xué)生中任意抽取2名,其中至少有一名邏輯思維能力優(yōu)秀的學(xué)生”, ∴P(B)=1-=. (2)隨機(jī)變量X的可能取值為0,1,2. ∵20名學(xué)生中,語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)共有8名, ∴P(X=0)==,

7、 P(X=1)==, P(X=2)==, ∴X的分布列為 X 0 1 2 P 10.某超市在節(jié)日期間進(jìn)行有獎促銷,凡在該超市購物滿300元的顧客,將獲得一次摸獎機(jī)會,規(guī)則如下: 獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回地每次摸出1個球,若摸到黑球則停止摸獎,否則就要將獎盒中的球全部摸出才停止.規(guī)定摸到紅球獎勵10元,摸到白球或黃球獎勵5元,摸到黑球不獎勵. (1)求1名顧客摸球3次停止摸獎的概率; (2)記X為1名顧客摸獎獲得的獎金數(shù)額,隨機(jī)變量X的分布列. 解 (1)設(shè)“1名顧客摸球3次停止摸獎”為事件A, 則P(A

8、)==, 故1名顧客摸球3次停止摸球的概率為. (2)隨機(jī)變量X的所有取值為0,5,10,15,20. P(X=0)=,P(X=5)==,P(X=10)=+=,P(X=15)==, P(X=20)==. 所以,隨機(jī)變量X的分布列為 X 0 5 10 15 20 P 11.隨機(jī)變量X的分布列如下: X -1 0 1 P a b c 其中a,b,c成等差數(shù)列,則P(|X|=1)等于(  ) A. B. C. D. 解析 ∵a,b,c成等差數(shù)列,∴2b=a+c.又a+b+c=1,∴b=,∴P(|X|=1)=a+c=. 答案

9、 D 12.若隨機(jī)變量X的分布列為 X -2 -1 0 1 2 3 P 0.1 0.2 0.2 0.3 0.1 0.1 則當(dāng)P(X

10、量數(shù)據(jù)如下: 編號 1 2 3 4 5 x 169 178 166 175 180 y 75 80 77 70 81 如果產(chǎn)品中的微量元素x,y滿足x≥175且y≥75時,該產(chǎn)品為優(yōu)等品. 現(xiàn)從上述5件產(chǎn)品中,隨機(jī)抽取2件,則抽取的2件產(chǎn)品中優(yōu)等品數(shù)X的分布列為________. 解析 5件抽測品中有2件優(yōu)等品,則X的可能取值為0,1,2.P(X=0)==0.3, P(X=1)==0.6, P(X=2)==0.1. ∴優(yōu)等品數(shù)X的分布列為 X 0 1 2 P 0.3 0.6 0.1 答案  X 0 1 2 P 0.

11、3 0.6 0.1 14.盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分.現(xiàn)從盒內(nèi)任取3個球. (1)求取出的3個球中至少有1個紅球的概率; (2)求取出的3個球得分之和恰為1分的概率; (3)設(shè)X為取出的3個球中白色球的個數(shù),求X的分布列. 解 (1)P=1-=. (2)記“取出1個紅色球,2個白色球”為事件B,“取出2個紅色球,1個黑色球”為事件C,則P(B+C)=P(B)+P(C)=+=. (3)X可能的取值為0,1,2,3,X服從超幾何分布,所以 P(X=k)=,k=0,1,2,3. 故P(X=0)==,P(X=1)==, P(X=2)==,P(X=3)==. 所以X的分布列為 X 0 1 2 3 P 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!