《2021高考數(shù)學一輪復習 課后限時集訓19 利用導數(shù)解決函數(shù)的零點問題 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《2021高考數(shù)學一輪復習 課后限時集訓19 利用導數(shù)解決函數(shù)的零點問題 理 北師大版(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課后限時集訓19利用導數(shù)解決函數(shù)的零點問題建議用時:45分鐘1(2019全國卷)已知函數(shù)f(x)ln x.(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點;(2)設(shè)x0是f(x)的一個零點,證明曲線yln x在點A(x0,ln x0)處的切線也是曲線yex的切線解(1)f(x)的定義域為(0,1)(1,)因為f(x)0,所以f(x)在(0,1),(1,)單調(diào)遞增因為f(e)10,f(e2)20,所以f(x)在(1,)有唯一零點x1(ex1e2),即f(x1)0.又01,fln x1f(x1)0,故f(x)在(0,1)有唯一零點.綜上,f(x)有且僅有兩個零點(2)因為eln x0,故
2、點B在曲線yex上由題設(shè)知f(x0)0,即ln x0,連接AB,則直線AB的斜率k.曲線yex在點B處切線的斜率是,曲線yln x在點A(x0,ln x0)處切線的斜率也是,所以曲線yln x在點A(x0,ln x0)處的切線也是曲線yex的切線2(2019武漢調(diào)研)已知函數(shù)f(x)exax1(aR)(e2.718 28是自然對數(shù)的底數(shù))(1)求f(x)的單調(diào)區(qū)間;(2)討論g(x)f(x)在區(qū)間0,1上零點的個數(shù)解(1)因為f(x)exax1,所以f(x)exa,當a0時,f(x)0恒成立,所以f(x)的單調(diào)遞增區(qū)間為(,),無單調(diào)遞減區(qū)間;當a0時,令f(x)0,得xln a,令f(x)0
3、,得xln a,所以f(x)的單調(diào)遞減區(qū)間為(,ln a),單調(diào)遞增區(qū)間為(ln a,)(2)令g(x)0,得f(x)0或x,先考慮f(x)在區(qū)間0,1上的零點個數(shù),當a1時,f(x)在(0,)上單調(diào)遞增且f(0)0,所以f(x)在0,1上有一個零點;當ae時,f(x)在(,1)上單調(diào)遞減,所以f(x)在0,1上有一個零點;當1ae時,f(x)在(0,ln a)上單調(diào)遞減,在(ln a,1)上單調(diào)遞增,而f(1)ea1,當ea10,即1ae1時,f(x)在0,1上有兩個零點,當ea10,即e1ae時,f(x)在0,1上有一個零點當x時,由f0得a2(1),所以當a1或ae1或a2(1)時,g(
4、x)在0,1上有兩個零點;當1ae1且a2(1)時,g(x)在0,1上有三個零點3(2019唐山模擬)已知函數(shù)f(x)4axaln x3a22a(a0)(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個極值點x1,x2,當a變化時,求f(x1)f(x2)的最大值解(1)函數(shù)f(x)的定義域為x0,對f(x)求導得f(x)x4a,x0,a0.令M(x)x24axa,則16a24a4a(4a1)當0a時,0,M(x)0在(0,)上恒成立,則f(x)0,f(x)在(0,)上單調(diào)遞增;當a時,0,f(x)0的根為x12a,x22a,由f(x)0得0x2a或x2a;由f(x)0得2ax2a.所以f(x)
5、在(0,2a),(2a,)上單調(diào)遞增;在(2a,2a)上單調(diào)遞減(2)由(1)得a,x12a,x22a,所以x1x24a,x1x2a,從而f(x1)f(x2)(xx)4a(x1x2)aln x1x26a24a(x1x2)2x1x210a24aaln aaln a2a23a.令g(a)aln a2a23a,則g(a)ln a4a4.令h(a)ln a4a4,則h(a)4.因為a,所以h(a)0,所以h(a)在上單調(diào)遞減又h(1)0,所以a時,h(a)0,g(a)0,g(a)在上單調(diào)遞增;a(1,)時,h(a)0,g(a)0,g(a)在(1,)上單調(diào)遞減,所以a1時,g(a)取得最大值1.故f(x1)f(x2)的最大值為1.3