《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)28 數(shù)列的概念與簡單表示法(含解析)理》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時集訓(xùn)28 數(shù)列的概念與簡單表示法(含解析)理(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、課后限時集訓(xùn)(二十八)(建議用時:60分鐘)A組基礎(chǔ)達(dá)標(biāo)一、選擇題1數(shù)列0,1,0,1,0,1,0,1,的一個通項(xiàng)公式an等于( )A. BcosCcos Dcos答案D2設(shè)數(shù)列an的前n項(xiàng)和為Sn,且Sn2(an1),則an( )A2n B2n1C2n D2n1C當(dāng)n1時,a1S12(a11),可得a12,當(dāng)n2時,anSnSn12an2an1,所以an2an1,所以數(shù)列an為等比數(shù)列,公比為2,首項(xiàng)為2,所以an2n.3數(shù)列an中,a11,對于所有的n2,nN*,都有a1a2a3ann2,則a3a5( )A. B. C. D.A由題意知a1a24,a1a2a39,a1a2a3a416,a1
2、a2a3a4a525,則a3,a5,則a3a5,故選A.4已知數(shù)列an滿足a10,an1an2n1,則數(shù)列an的一個通項(xiàng)公式為( )Aann1 Ban(n1)2Can(n1)3 Dan(n1)4B由題意知anan12n3(n2),則an(anan1)(an1an2)(a2a1)a1(2n3)(2n5)31(n1)2.故選B.5若數(shù)列an滿足a1,an1(n2,且nN*),則a2 018等于( )A1 B. C1 D2Aa1,a211,a312,a41,.因此數(shù)列an是以3為周期的數(shù)列從而a2 018a21,故選A.二、填空題6若數(shù)列an的前n項(xiàng)和Snn2n,則數(shù)列an的通項(xiàng)公式an_.n1當(dāng)n
3、1時,a1S1.當(dāng)n2時,anSnSn1n2n(n1)2(n1)1.又a1適合上式,則ann1.7在數(shù)列an中,a11,anan1(n2),則數(shù)列an的通項(xiàng)公式an_.由anan1得,ana11.當(dāng)n1時,a11適合上式故an.8(2019合肥模擬)已知數(shù)列an的前n項(xiàng)和為Sn,a12,Sn12Sn1(nN*),則a10_.256因?yàn)閍12,Sn12Sn1,所以Sn112(Sn1),所以Sn1是等比數(shù)列,且公比為2,所以Sn12n1,所以Sn2n11,所以a10S10S92928256.三、解答題9已知數(shù)列an的前n項(xiàng)和為Sn.(1)若Sn(1)n1n,求a5a6及an;(2)若Sn3n2n1
4、,求an.解(1)因?yàn)閍5a6S6S4(6)(4)2,當(dāng)n1時,a1S11,當(dāng)n2時,anSnSn1(1)n1n(1)n(n1)(1)n1n(n1)(1)n1(2n1),又a1也適合此式,所以an(1)n1(2n1)(2)因?yàn)楫?dāng)n1時,a1S16,當(dāng)n2時,anSnSn1(3n2n1)3n12(n1)123n12.由于a1不適合此式,所以an10已知Sn為正項(xiàng)數(shù)列an 的前n項(xiàng)和,且滿足Snaan(nN*)(1)求a1,a2,a3,a4的值;(2)求數(shù)列an的通項(xiàng)公式解(1)由Snaan(nN*),可得a1aa1,解得a11;S2a1a2aa2,解得a22;同理a33,a44.(2)Snaan
5、,當(dāng)n2時,Sn1aan1,得(anan11)(anan1)0.由于anan10,所以anan11,又由(1)知a11,故數(shù)列an是首項(xiàng)為1,公差為1的等差數(shù)列,故ann.B組能力提升1已知各項(xiàng)都為正數(shù)的數(shù)列an滿足aan1an2a0,且a12,則數(shù)列an的通項(xiàng)公式為( )Aan2n1 Ban3n1Can2n Dan3nCaan1an2a0,(an1an)(an12an)0.數(shù)列an的各項(xiàng)均為正數(shù),an1an0,an12an0,即an12an(nN*),數(shù)列an是以2為公比的等比數(shù)列a12,an2n.2已知正項(xiàng)數(shù)列an中,則數(shù)列an的通項(xiàng)公式為( )Aann Bann2Can DanB,(n2
6、),兩式相減得n(n2),ann2(n2),又當(dāng)n1時,1,a11,適合式,ann2,nN*.故選B.3已知數(shù)列an的前n項(xiàng)和為Sn,a11,an13Sn,則an_.由an13Sn,得an3Sn1(n2),兩式相減可得an1an3Sn3Sn13an(n2),an14an(n2)a11,a23S134a1,數(shù)列an是從第二項(xiàng)開始的等比數(shù)列,ana2qn234n2(n2)故an4已知數(shù)列an的通項(xiàng)公式是ann2kn4.(1)若k5,則數(shù)列中有多少項(xiàng)是負(fù)數(shù)?n為何值時,an有最小值?并求出最小值;(2)對于nN*,都有an1an,求實(shí)數(shù)k的取值范圍解(1)由n25n40,解得1nan知該數(shù)列是一個遞增數(shù)列,又因?yàn)橥?xiàng)公式ann2kn4,可以看作是關(guān)于n的二次函數(shù),考慮到nN*,所以3.所以實(shí)數(shù)k的取值范圍為(3,)- 5 -