高考數(shù)學(xué)圓錐曲線小題拔高題組有詳細(xì)答案.doc
《高考數(shù)學(xué)圓錐曲線小題拔高題組有詳細(xì)答案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)圓錐曲線小題拔高題組有詳細(xì)答案.doc(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2015年高考數(shù)學(xué)圓錐曲線小題拔高題組一選擇題(共15小題)1(2014南昌模擬)已知雙曲線的左右焦點(diǎn)分別為F1,F(xiàn)2,e為雙曲線的離心率,P是雙曲線右支上的點(diǎn),PF1F2的內(nèi)切圓的圓心為I,過(guò)F2作直線PI的垂線,垂足為B,則OB=()AaBbCeaDeb2(2014衡陽(yáng)三模)設(shè)F1,F(xiàn)2分別是雙曲線=1(a0,b0)的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P滿(mǎn)足|PF2|=|F1F2|且cosPF1F2=,則雙曲線的漸近線方程為()A3x4y=0B3x5y=0C4x3y=0D5x4y=03(2014南昌模擬)已知拋物線y2=2px(p0)的焦點(diǎn)F與橢圓的一個(gè)焦點(diǎn)重合,它們?cè)诘谝幌笙迌?nèi)的交點(diǎn)為T(mén)
2、,且TF與x軸垂直,則橢圓的離心率為()ABCD4(2014上海模擬)過(guò)拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A,B兩點(diǎn),它們到直線x=2的距離之和等于5,則這樣的直線()A有且僅有一條B有且僅有兩條C有無(wú)窮多條D不存在5(2014商丘二模)設(shè)拋物線y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)M(1,0)的直線在第一象限交拋物線于A、B,使,則直線AB的斜率k=()ABCD6(2014宿州三模)過(guò)雙曲線(a0,b0)的左焦點(diǎn)F(c,0)作圓x2+y2=a2的切線,切點(diǎn)為E,延長(zhǎng)FE交拋物線y2=4cx于點(diǎn)P,若E為線段FP的中點(diǎn),則雙曲線的離心率為()ABC+1D7(2014鄭州一模)過(guò)雙曲線的左焦點(diǎn)F
3、(c,0),(c0),作圓:x2+y2=的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若=(+),則雙曲線的離心率為()ABCD8(2014河池一模)已知橢圓的一個(gè)焦點(diǎn)為F,若橢圓上存在點(diǎn)P,滿(mǎn)足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點(diǎn),則該橢圓的離心率為()ABCD9(2014重慶三模)設(shè)雙曲線的右焦點(diǎn)為F(c,0),方程ax2+bxc=0的兩實(shí)根分別為x1,x2,則P(x1,x2)()A必在圓x2+y2=2內(nèi)B必在圓x2+y2=2外C必在圓x2+y2=2上D以上三種情況都有可能10(2014貴州模擬)已知點(diǎn)M是拋物線y2=4x的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A在圓C:(x4)2+(y1
4、)2=1上,則|MA|+|MF|的最小值為()A2B3C4D511(2013廣東)已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),離心率等于,則C的方程是()ABCD12(2013浙江)如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點(diǎn)A、B分別是C1、C2在第二、四象限的公共點(diǎn),若四邊形AF1BF2為矩形,則C2的離心率是()ABCD13(2013四川)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,A是橢圓與x軸正半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且ABOP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是()ABCD14(2013遼寧)已知橢圓C:的左焦點(diǎn)F,C與過(guò)原點(diǎn)的直線相交于A,B兩
5、點(diǎn),連結(jié)AF,BF,若|AB|=10,|AF|=6,則C的離心率為()ABCD15(2013東城區(qū)模擬)設(shè)F為拋物線y2=4x的焦點(diǎn),A,B,C為該拋物線上三點(diǎn),若+=,則的值為()A3B4C6D9二填空題(共15小題)16(2012安徽)過(guò)拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),若|AF|=3,則|BF|=_17(2012重慶)過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若,則|AF|=_18(2012江蘇)在平面直角坐標(biāo)系xOy中,若雙曲線的離心率為,則m的值為_(kāi)19(2012遼寧)已知雙曲線x2y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若PF1PF2
6、,則|PF1|+|PF2|的值為_(kāi)20(2012遼寧)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)為4,2,過(guò)P,Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為_(kāi)21(2012重慶)設(shè)P為直線y=x與雙曲線=1(a0,b0)左支的交點(diǎn),F(xiàn)1是左焦點(diǎn),PF1垂直于x軸,則雙曲線的離心率e=_22(2012湖北)如圖,雙曲線=1(a,b0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點(diǎn)分別為A,B,C,D則:()雙曲線的離心率e=_;()菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值=_23(20
7、12梅州一模)已知雙曲線(a0,b0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率的取值范圍是_24(2012包頭一模)已知雙曲線=1(a0,b0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P,若|PF|=5,則雙曲線方程為_(kāi)25(2012蘭州模擬)雙曲線一條漸近線的傾斜角為,離心率為e,則的最小值為_(kāi)26(2012吉林二模)已知雙曲線的左右焦點(diǎn)是F1,F(xiàn)2,設(shè)P是雙曲線右支上一點(diǎn),上的投影的大小恰好為且它們的夾角為,則雙曲線的離心率e為_(kāi)27(2012資陽(yáng)二模)如圖,已知F1,F(xiàn)2是橢圓C:(ab0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上
8、,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為_(kāi)28(2011浙江)設(shè)F1,F(xiàn)2分別為橢圓+y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若=5;則點(diǎn)A的坐標(biāo)是_29(2011江西)若橢圓的焦點(diǎn)在x軸上,過(guò)點(diǎn)(1,)做圓x2+y2=1的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn),則橢圓的方程是_30(2011臺(tái)灣)設(shè) E1:(其中a0)為焦點(diǎn)在(3,0),(3,0)的橢圓;E2:焦點(diǎn)在(3,0)且準(zhǔn)線為x=3的拋物線已知E1,E2的交點(diǎn)在直線x=3上,則 a=_2015年高考數(shù)學(xué)圓錐曲線小題拔高題組參考答案與試題解析一選擇題(共15小題)1(20
9、14南昌模擬)已知雙曲線的左右焦點(diǎn)分別為F1,F(xiàn)2,e為雙曲線的離心率,P是雙曲線右支上的點(diǎn),PF1F2的內(nèi)切圓的圓心為I,過(guò)F2作直線PI的垂線,垂足為B,則OB=()AaBbCeaDeb考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題;圓錐曲線的定義、性質(zhì)與方程分析:根據(jù)題意,利用切線長(zhǎng)定理,再利用雙曲線的定義,把|PF1|PF2|=2a,轉(zhuǎn)化為|AF1|AF2|=2a,從而求得點(diǎn)H的橫坐標(biāo)再在三角形PCF2中,由題意得,它是一個(gè)等腰三角形,從而在三角形F1CF2中,利用中位線定理得出OB,從而解決問(wèn)題解答:解:由題意知:F1(c,0)、F2(c,0),內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)A,|
10、PF1|PF2|=2a,及圓的切線長(zhǎng)定理知,|AF1|AF2|=2a,設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,則|(x+c)(cx)|=2ax=a在三角形PCF2中,由題意得,它是一個(gè)等腰三角形,PC=PF2,在三角形F1CF2中,有:OB=CF1=(PF1PC)=(PF1PF2)=2a=a故選A點(diǎn)評(píng):本題考查雙曲線的定義、切線長(zhǎng)定理解答的關(guān)鍵是充分利用三角形內(nèi)心的性質(zhì)2(2014衡陽(yáng)三模)設(shè)F1,F(xiàn)2分別是雙曲線=1(a0,b0)的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P滿(mǎn)足|PF2|=|F1F2|且cosPF1F2=,則雙曲線的漸近線方程為()A3x4y=0B3x5y=0C4x3y=0D5x4y=0考點(diǎn):雙
11、曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:利用題設(shè)條件和雙曲線性質(zhì)在三角形中尋找等量關(guān)系,得出a與b之間的等量關(guān)系,從而得出正確答案解答:解:依題意|PF2|=|F1F2|,可知三角形PF2F1是一個(gè)等腰三角形,F(xiàn)2在直線PF1的投影A是線段PF1中點(diǎn),由勾股定理知可知|PF1|=2|F1A|=2|F1F2|cosPF1F2=22c=,根據(jù)雙曲定義可知|PF1|PF2|=2a,即2c=2a,整理得c=a,代入c2=a2+b2整理得4b=3a,求得=雙曲線漸近線方程為y=x,即3x4y=0故選A點(diǎn)評(píng):本題主要考查雙曲線的簡(jiǎn)單性質(zhì)、三角與雙曲線的相關(guān)知識(shí)點(diǎn),突出了對(duì)計(jì)算能力和綜合運(yùn)用知
12、識(shí)能力的考查,屬中檔題3(2014南昌模擬)已知拋物線y2=2px(p0)的焦點(diǎn)F與橢圓的一個(gè)焦點(diǎn)重合,它們?cè)诘谝幌笙迌?nèi)的交點(diǎn)為T(mén),且TF與x軸垂直,則橢圓的離心率為()ABCD考點(diǎn):圓錐曲線的共同特征菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:由條件可得b2=2ac,再根據(jù)c2 +b2 a2=0,即c2+2aca2=0,兩邊同時(shí)除以a2,化為關(guān)于 的一元二次方程,解方程求出橢圓的離心率 的值解答:解:依題意拋物線y2=2px(p0)的焦點(diǎn)F與橢圓的一個(gè)焦點(diǎn)重合,得:,由TF=及TF=p,得,b2=2ac,又c2 +b2 a2=0,c2+2aca2=0,e2+2e1=0,解得 故選B點(diǎn)評(píng):本題考查
13、了圓錐曲線的共同特征,主要考查了橢圓和拋物線的幾何性質(zhì),屬于基礎(chǔ)題4(2014上海模擬)過(guò)拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A,B兩點(diǎn),它們到直線x=2的距離之和等于5,則這樣的直線()A有且僅有一條B有且僅有兩條C有無(wú)窮多條D不存在考點(diǎn):直線與圓錐曲線的關(guān)系菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:先求出A,B到準(zhǔn)線的距離之和的最小值,進(jìn)而可得A,B到直線x=2的距離之和的最小值,利用條件可得結(jié)論解答:解:拋物線y2=4x的焦點(diǎn)坐標(biāo)為(1,0),準(zhǔn)線方程為x=1,設(shè)A,B的坐標(biāo)為(x1,y1),(x2,y2),則A,B到直線x=1的距離之和x1+x2+2設(shè)直線方程為x=my+1,代
14、入拋物線y2=4x,則y2=4(my+1),即y24my4=0,x1+x2=m(y1+y2)+2=4m2+2x1+x2+2=4m2+44A,B到直線x=2的距離之和x1+x2+2+265過(guò)焦點(diǎn)使得到直線x=2的距離之和等于5的直線不存在故選D點(diǎn)評(píng):本題考查拋物線的定義,考查過(guò)焦點(diǎn)弦長(zhǎng)的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題5(2014商丘二模)設(shè)拋物線y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)M(1,0)的直線在第一象限交拋物線于A、B,使,則直線AB的斜率k=()ABCD考點(diǎn):直線與圓錐曲線的關(guān)系菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:由題意可得直線AB的方程 y0=k (x+1),k0,代入拋物線y2=4x
15、化簡(jiǎn)求得x1+x2 和x1x2,進(jìn)而得到y(tǒng)1+y2和y1y2,由 ,解方程求得k的值解答:解:拋物線y2=4x的焦點(diǎn)F(1,0),直線AB的方程 y0=k (x+1),k0代入拋物線y2=4x化簡(jiǎn)可得 k2x2+(2k24)x+k2=0,x1+x2=,x1x2=1y1+y2=k(x1+1)+k(x2+1)=+2k=,y1y2=k2(x1+x2+x1x2+1)=4又 =(x11,y1)(x21,y2)=x1x2(x1+x2)+1+y1y2=8,k=,故選:B點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,兩個(gè)向量的數(shù)量積公式的應(yīng)用,得到 8=0,是解題的難點(diǎn)和關(guān)鍵6(2014宿州三模)過(guò)雙曲線(a0,b
16、0)的左焦點(diǎn)F(c,0)作圓x2+y2=a2的切線,切點(diǎn)為E,延長(zhǎng)FE交拋物線y2=4cx于點(diǎn)P,若E為線段FP的中點(diǎn),則雙曲線的離心率為()ABC+1D考點(diǎn):圓錐曲線的綜合;雙曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:綜合題;壓軸題分析:雙曲線的右焦點(diǎn)的坐標(biāo)為(c,0),利用O為FF的中點(diǎn),E為FP的中點(diǎn),可得OE為PFF的中位線,從而可求|PF|,再設(shè)P(x,y) 過(guò)點(diǎn)F作x軸的垂線,由勾股定理得出關(guān)于a,c的關(guān)系式,最后即可求得離心率解答:解:設(shè)雙曲線的右焦點(diǎn)為F,則F的坐標(biāo)為(c,0)因?yàn)閽佄锞€為y2=4cx,所以F為拋物線的焦點(diǎn) 因?yàn)镺為FF的中點(diǎn),E為FP的中點(diǎn),所以O(shè)E為PFF的中位線,
17、屬于OEPF因?yàn)閨OE|=a,所以|PF|=2a又PFPF,|FF|=2c 所以|PF|=2b 設(shè)P(x,y),則由拋物線的定義可得x+c=2a,x=2ac 過(guò)點(diǎn)F作x軸的垂線,點(diǎn)P到該垂線的距離為2a 由勾股定理 y2+4a2=4b2,即4c(2ac)+4a2=4(c2a2)得e2e1=0,e=故選D點(diǎn)評(píng):本題主要考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查拋物線的定義,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題7(2014鄭州一模)過(guò)雙曲線的左焦點(diǎn)F(c,0),(c0),作圓:x2+y2=的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若=(+),則雙曲線的離心
18、率為()ABCD考點(diǎn):圓與圓錐曲線的綜合菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:綜合題;壓軸題分析:由題設(shè)知|EF|=,|PF|=2,|PF|=a,再由|PF|PF|=2a,知2a=2a,由此能求出雙曲線的離心率解答:解:|OF|=c,|OE|=,|EF|=,|PF|=2,|PF|=a,|PF|PF|=2a,2a=2a,故選C點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答8(2014河池一模)已知橢圓的一個(gè)焦點(diǎn)為F,若橢圓上存在點(diǎn)P,滿(mǎn)足以橢圓短軸為直徑的圓與線段PF相切于線段PF的中點(diǎn),則該橢圓的離心率為()ABCD考點(diǎn):圓與圓錐曲線的綜合菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:記線段PF1的中點(diǎn)
19、為M,橢圓中心為O,連接OM,PF2則有|PF2|=2|OM|,2a2=2b,由此能夠推導(dǎo)出該橢圓的離心率解答:解:記線段PF1的中點(diǎn)為M,橢圓中心為O,連接OM,PF2則有|PF2|=2|OM|,2a2=2b,a=,1=,解得e2=,e=故選A點(diǎn)評(píng):本題考查橢圓的離心率,解題時(shí)要認(rèn)真審題,合理地進(jìn)行等價(jià)轉(zhuǎn)化,充分利用橢圓的性質(zhì)進(jìn)行解題9(2014重慶三模)設(shè)雙曲線的右焦點(diǎn)為F(c,0),方程ax2+bxc=0的兩實(shí)根分別為x1,x2,則P(x1,x2)()A必在圓x2+y2=2內(nèi)B必在圓x2+y2=2外C必在圓x2+y2=2上D以上三種情況都有可能考點(diǎn):圓與圓錐曲線的綜合菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:
20、計(jì)算題;壓軸題分析:由題設(shè)知,故x12+x22=(x1+x2)22x1x2=1,所以,點(diǎn)P(x1,x2)必在圓x2+y2=2外解答:解:,x12+x22=(x1+x2)22x1x2=1+e22P(x1,x2)必在圓x2+y2=2外故選B點(diǎn)評(píng):本題考查圓秘圓錐曲線的綜合運(yùn)用,解題時(shí)要注意韋達(dá)定理和點(diǎn)與圓的位置關(guān)系的合理運(yùn)用10(2014貴州模擬)已知點(diǎn)M是拋物線y2=4x的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A在圓C:(x4)2+(y1)2=1上,則|MA|+|MF|的最小值為()A2B3C4D5考點(diǎn):圓與圓錐曲線的綜合;拋物線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:綜合題;壓軸題分析:先根據(jù)拋物線方程求得準(zhǔn)線方程,
21、過(guò)點(diǎn)M作MN準(zhǔn)線,垂足為N,根據(jù)拋物線定義可得|MN|=|MF|,問(wèn)題轉(zhuǎn)化為求|MA|+|MN|的最小值,根據(jù)A在圓C上,判斷出當(dāng)N,M,C三點(diǎn)共線時(shí),|MA|+|MN|有最小值,進(jìn)而求得答案解答:解:拋物線y2=4x的準(zhǔn)線方程為:x=1過(guò)點(diǎn)M作MN準(zhǔn)線,垂足為N點(diǎn)M是拋物線y2=4x的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn)|MN|=|MF|MA|+|MF|=|MA|+|MN|A在圓C:(x4)2+(y1)2=1,圓心C(4,1),半徑r=1當(dāng)N,M,C三點(diǎn)共線時(shí),|MA|+|MF|最?。▅MA|+|MF|)min=(|MA|+|MN|)min=|CN|r=51=4(|MA|+|MF|)min=4故選C點(diǎn)評(píng):
22、本題的考點(diǎn)是圓與圓錐曲線的綜合,考查拋物線的簡(jiǎn)單性質(zhì),考查距離和的最小解題的關(guān)鍵是利用化歸和轉(zhuǎn)化的思想,將問(wèn)題轉(zhuǎn)化為當(dāng)N,M,C三點(diǎn)共線時(shí),|MA|+|MF|最小11(2013廣東)已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),離心率等于,則C的方程是()ABCD考點(diǎn):橢圓的標(biāo)準(zhǔn)方程菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:壓軸題;圓錐曲線的定義、性質(zhì)與方程分析:由已知可知橢圓的焦點(diǎn)在x軸上,由焦點(diǎn)坐標(biāo)得到c,再由離心率求出a,由b2=a2c2求出b2,則橢圓的方程可求解答:解:由題意設(shè)橢圓的方程為因?yàn)闄E圓C的右焦點(diǎn)為F(1,0),所以c=1,又離心率等于,即,所以a=2,則b2=a2c2=3所以橢圓的方程為故選D
23、點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的簡(jiǎn)單性質(zhì),屬中檔題12(2013浙江)如圖F1、F2是橢圓C1:+y2=1與雙曲線C2的公共焦點(diǎn)A、B分別是C1、C2在第二、四象限的公共點(diǎn),若四邊形AF1BF2為矩形,則C2的離心率是()ABCD考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題;圓錐曲線的定義、性質(zhì)與方程分析:不妨設(shè)|AF1|=x,|AF2|=y,依題意,解此方程組可求得x,y的值,利用雙曲線的定義及性質(zhì)即可求得C2的離心率解答:解:設(shè)|AF1|=x,|AF2|=y,點(diǎn)A為橢圓C1:+y2=1上的點(diǎn),2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四
24、邊形AF1BF2為矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,設(shè)雙曲線C2的實(shí)軸長(zhǎng)為2m,焦距為2n,則2m=|AF2|AF1|=yx=2,2n=2=2,雙曲線C2的離心率e=故選D點(diǎn)評(píng):本題考查橢圓與雙曲線的簡(jiǎn)單性質(zhì),求得|AF1|與|AF2|是關(guān)鍵,考查分析與運(yùn)算能力,屬于中檔題13(2013四川)從橢圓上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,A是橢圓與x軸正半軸的交點(diǎn),B是橢圓與y軸正半軸的交點(diǎn),且ABOP(O是坐標(biāo)原點(diǎn)),則該橢圓的離心率是()ABCD考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題;圓錐曲線的定義、性質(zhì)與方程分析:依題意,可求得點(diǎn)
25、P的坐標(biāo)P(c,),由ABOPkAB=kOPb=c,從而可得答案解答:解:依題意,設(shè)P(c,y0)(y00),則+=1,y0=,P(c,),又A(a,0),B(0,b),ABOP,kAB=kOP,即=,b=c設(shè)該橢圓的離心率為e,則e2=,橢圓的離心率e=故選C點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),求得點(diǎn)P的坐標(biāo)(c,)是關(guān)鍵,考查分析與運(yùn)算能力,屬于中檔題14(2013遼寧)已知橢圓C:的左焦點(diǎn)F,C與過(guò)原點(diǎn)的直線相交于A,B兩點(diǎn),連結(jié)AF,BF,若|AB|=10,|AF|=6,則C的離心率為()ABCD考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:壓軸題;圓錐曲線的定義、性質(zhì)與方程分析:在AFB中,由余
26、弦定理可得|AF|2=|AB|2+|BF|22|AB|BF|cosABF,即可得到|BF|,設(shè)F為橢圓的右焦點(diǎn),連接BF,AF根據(jù)對(duì)稱(chēng)性可得四邊形AFBF是矩形即可得到a,c,進(jìn)而取得離心率解答:解:如圖所示,在AFB中,由余弦定理可得|AF|2=|AB|2+|BF|22|AB|BF|cosABF,化為(|BF|8)2=0,解得|BF|=8設(shè)F為橢圓的右焦點(diǎn),連接BF,AF根據(jù)對(duì)稱(chēng)性可得四邊形AFBF是矩形|BF|=6,|FF|=102a=8+6,2c=10,解得a=7,c=5故選B點(diǎn)評(píng):熟練掌握余弦定理、橢圓的定義、對(duì)稱(chēng)性、離心率、矩形的性質(zhì)等基礎(chǔ)知識(shí)是解題的關(guān)鍵15(2013東城區(qū)模擬)設(shè)
27、F為拋物線y2=4x的焦點(diǎn),A,B,C為該拋物線上三點(diǎn),若+=,則的值為()A3B4C6D9考點(diǎn):拋物線的簡(jiǎn)單性質(zhì);向量的模菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:先設(shè)A(x1,y1),B(x2,y2),C(x3,y3),根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,再依據(jù)=0,判斷點(diǎn)F是ABC重心,進(jìn)而可求x1+x2+x3的值最后根據(jù)拋物線的定義求得答案解答:解:設(shè)A(x1,y1),B(x2,y2),C(x3,y3)拋物線焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線方程:x=1=,點(diǎn)F是ABC重心則x1+x2+x3=3y1+y2+y3=0而|FA|=x1(1)=x1+1|FB|=x2(1)=x2+1|FC|=x3(1
28、)=x3+1|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故選C點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì)解本題的關(guān)鍵是判斷出F點(diǎn)為三角形的重心二填空題(共15小題)16(2012安徽)過(guò)拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),若|AF|=3,則|BF|=考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:設(shè)AFx=,(0,)及|BF|=m,利用拋物線的定義直接求出m即|BF|的值解答:解:設(shè)AFx=,(0,)及|BF|=m,則點(diǎn)A到準(zhǔn)線l:x=1的距離為3得3=2+3coscos=,又m=2+mcos()=故答案為:點(diǎn)評(píng):本
29、題考查拋物線的定義的應(yīng)用,考查計(jì)算能力17(2012重慶)過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若,則|AF|=考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:設(shè)出點(diǎn)的坐標(biāo)與直線的方程,利用拋物線的定義表示出|AF|、|BF|再聯(lián)立直線與拋物線的方程利用根與系數(shù)的關(guān)系解決問(wèn)題,即可得到答案解答:解:由題意可得:F(,0),設(shè)A(x1,y1),B(x2,y2)因?yàn)檫^(guò)拋物線y2=2x的焦點(diǎn)F作直線l交拋物線于A、B兩點(diǎn),所以|AF|=+x1,|BF|=+x2因?yàn)?,所以x1+x2=設(shè)直線l的方程為y=k(x),聯(lián)立直線與拋物線的方程可得:k2x2(k2+2)x+=0,所
30、以x1+x2=k2=2424x226x+6=0,|AF|=+x1=故答案為:點(diǎn)評(píng):解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握拋物線的定義,以及掌握直線與拋物線位置關(guān)系,并且結(jié)合準(zhǔn)確的運(yùn)算也是解決此類(lèi)問(wèn)題的一個(gè)重要方面18(2012江蘇)在平面直角坐標(biāo)系xOy中,若雙曲線的離心率為,則m的值為2考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:由雙曲線方程得y2的分母m2+40,所以雙曲線的焦點(diǎn)必在x軸上因此a2=m0,可得c2=m2+m+4,最后根據(jù)雙曲線的離心率為,可得c2=5a2,建立關(guān)于m的方程:m2+m+4=5m,解之得m=2解答:解:m2+40雙曲線的焦點(diǎn)必在x軸上因此a2=m0,b2
31、=m2+4c2=m+m2+4=m2+m+4雙曲線的離心率為,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案為:2點(diǎn)評(píng):本題給出含有字母參數(shù)的雙曲線方程,在已知離心率的情況下求參數(shù)的值,著重考查了雙曲線的概念與性質(zhì),屬于基礎(chǔ)題19(2012遼寧)已知雙曲線x2y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若PF1PF2,則|PF1|+|PF2|的值為考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:根據(jù)雙曲線方程為x2y2=1,可得焦距F1F2=2,因?yàn)镻F1PF2,所以|PF1|2+|PF2|2=|F1F2|2再結(jié)合雙曲線的定義,得到|PF1|PF2|=2,
32、最后聯(lián)解、配方,可得(|PF1|+|PF2|)2=12,從而得到|PF1|+|PF2|的值為解答:解:PF1PF2,|PF1|2+|PF2|2=|F1F2|2雙曲線方程為x2y2=1,a2=b2=1,c2=a2+b2=2,可得F1F2=2|PF1|2+|PF2|2=|F1F2|2=8又P為雙曲線x2y2=1上一點(diǎn),|PF1|PF2|=2a=2,(|PF1|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)(|PF1|PF2|)2=12|PF1|+|PF2|的值為故答案為:點(diǎn)評(píng):本題根據(jù)已知雙曲線上對(duì)兩個(gè)焦點(diǎn)的張角為直角的兩條焦半徑,求它們長(zhǎng)度的和,著重考查了雙曲
33、線的基本概念與簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題20(2012遼寧)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)為4,2,過(guò)P,Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為4考點(diǎn):直線與圓錐曲線的關(guān)系菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:通過(guò)P,Q的橫坐標(biāo)求出縱坐標(biāo),通過(guò)二次函數(shù)的導(dǎo)數(shù),推出切線方程,求出交點(diǎn)的坐標(biāo),即可得到點(diǎn)A的縱坐標(biāo)解答:解:因?yàn)辄c(diǎn)P,Q的橫坐標(biāo)分別為4,2,代入拋物線方程得P,Q的縱坐標(biāo)分別為8,2由x2=2y,則y=,所以y=x,過(guò)點(diǎn)P,Q的拋物線的切線的斜率分別為4,2,所以過(guò)點(diǎn)P,Q的拋物線的切線方程分別為y=4x8,y=2x2 聯(lián)立方程組解得x=1,y=4
34、故點(diǎn)A的縱坐標(biāo)為4故答案為:4點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)求切線方程的方法,直線的方程、兩條直線的交點(diǎn)的求法,屬于中檔題21(2012重慶)設(shè)P為直線y=x與雙曲線=1(a0,b0)左支的交點(diǎn),F(xiàn)1是左焦點(diǎn),PF1垂直于x軸,則雙曲線的離心率e=考點(diǎn):直線與圓錐曲線的關(guān)系;雙曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:設(shè)F1(c,0),利用F1是左焦點(diǎn),PF1垂直于x軸,P為直線y=x上的點(diǎn),可得(c,)在雙曲線=1上,由此可求雙曲線的離心率解答:解:設(shè)F1(c,0),則F1是左焦點(diǎn),PF1垂直于x軸,P為直線y=x上的點(diǎn)(c,)在雙曲線=1上=故答案為:點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程
35、與幾何性質(zhì),考查雙曲線的離心率,屬于中檔題22(2012湖北)如圖,雙曲線=1(a,b0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點(diǎn)分別為A,B,C,D則:()雙曲線的離心率e=;()菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值=考點(diǎn):圓錐曲線的綜合菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:綜合題;壓軸題分析:()直線B2F1的方程為bxcy+bc=0,所以O(shè)到直線的距離為,根據(jù)以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,可得,由此可求雙曲線的離心率;()菱形F1B1F2B2的面積S1=2bc,求出矩形ABCD的長(zhǎng)與寬,
36、從而求出面積S2=4mn=,由此可得結(jié)論解答:解:()直線B2F1的方程為bxcy+bc=0,所以O(shè)到直線的距離為以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,(c2a2)c2=(2c2a2)a2c43a2c2+a4=0e43e2+1=0e1e=()菱形F1B1F2B2的面積S1=2bc設(shè)矩形ABCD,BC=2m,BA=2n,m2+n2=a2,面積S2=4mn=bc=a2=c2b2=故答案為:,點(diǎn)評(píng):本題考查圓與圓錐曲線的綜合,考查雙曲線的性質(zhì),面積的計(jì)算,解題的關(guān)鍵是確定幾何量之間的關(guān)系23(2012梅州一模)已知雙曲線(a0,b0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60的直線與雙曲線的右支
37、有且只有一個(gè)交點(diǎn),則此雙曲線的離心率的取值范圍是2,+)考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:若過(guò)點(diǎn)F且傾斜角為60的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍解答:解:已知雙曲線 的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率 ,離心率e2=,e2,故答案為:2,+)點(diǎn)評(píng):本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件24(2012包頭一模)已知雙曲線=1(a0,b0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線
38、的一個(gè)交點(diǎn)為P,若|PF|=5,則雙曲線方程為x2=1考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì);拋物線的簡(jiǎn)單性質(zhì);雙曲線的標(biāo)準(zhǔn)方程菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:根據(jù)雙曲線=1(a0,b0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,可得雙曲線的右焦點(diǎn)坐標(biāo)為F(2,0),雙曲線的左焦點(diǎn)坐標(biāo)為F(2,0),利用|PF|=5,可求P的坐標(biāo),從而可求雙曲線方程解答:解:拋物線y2=8x的焦點(diǎn)坐標(biāo)為(2,0),準(zhǔn)線方程為直線x=2雙曲線=1(a0,b0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F雙曲線的右焦點(diǎn)坐標(biāo)為F(2,0),雙曲線的左焦點(diǎn)坐標(biāo)為F(2,0)|PF|=5點(diǎn)P的橫坐標(biāo)為3代入拋物線y2=8x,不妨設(shè)P(3,
39、2)根據(jù)雙曲線的定義,|PF|PF|=2a 得出=2aa=1,c=2b=雙曲線方程為x2=1故答案為:x2=1點(diǎn)評(píng):本題重點(diǎn)考查雙曲線的標(biāo)準(zhǔn)方程,考查拋物線的定義,有一定的綜合性25(2012蘭州模擬)雙曲線一條漸近線的傾斜角為,離心率為e,則的最小值為考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì);基本不等式菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題;圓錐曲線的定義、性質(zhì)與方程分析:根據(jù)條件,確定幾何量之間的關(guān)系,再利用基本不等式,即可得到結(jié)論解答:解:由題意,b=,c=2a=(當(dāng)且僅當(dāng)a=時(shí)取等號(hào))當(dāng)a=時(shí),的最小值為故答案為:點(diǎn)評(píng):本題考查雙曲線的幾何性質(zhì),考查基本不等式的運(yùn)用,屬于中檔題26(2012吉林二模)已知雙
40、曲線的左右焦點(diǎn)是F1,F(xiàn)2,設(shè)P是雙曲線右支上一點(diǎn),上的投影的大小恰好為且它們的夾角為,則雙曲線的離心率e為考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:先根據(jù) 上的投影的大小恰好為 判斷兩向量互相垂直得到直角三角形,進(jìn)而根據(jù)直角三角形中內(nèi)角為 ,結(jié)合雙曲線的定義建立等式求得a和c的關(guān)系式,最后根據(jù)離心率公式求得離心率e解答:解:上的投影的大小恰好為 ,PF1PF2,又因?yàn)樗鼈兊膴A角為 ,所以 ,所以在直角三角形PF1F2中,F(xiàn)1F2=2c,所以PF2=c,PF1=又根據(jù)雙曲線的定義得:PF1PF2=2a,cc=2a,所以e=故答案為:點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)考查了
41、學(xué)生綜合分析問(wèn)題和運(yùn)算的能力解答關(guān)鍵是通過(guò)解三角形求得a,c的關(guān)系從而求出離心率27(2012資陽(yáng)二模)如圖,已知F1,F(xiàn)2是橢圓C:(ab0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則橢圓C的離心率為考點(diǎn):圓與圓錐曲線的綜合菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:本題考察的知識(shí)點(diǎn)是平面向量的數(shù)量積的運(yùn)算,及橢圓的簡(jiǎn)單性質(zhì),由F1、F2是橢圓 (ab0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),連接OQ,F(xiàn)1P后,我們易根據(jù)平面幾何的知識(shí),根據(jù)切線的性質(zhì)及中位線的性質(zhì)得到PF2PF
42、1,并由此得到橢圓C的離心率解答:解:連接OQ,F(xiàn)1P如下圖所示:則由切線的性質(zhì),則OQPF2,又由點(diǎn)Q為線段PF2的中點(diǎn),O為F1F2的中點(diǎn)OQF1PPF2PF1,故|PF2|=2a2b,且|PF1|=2b,|F1F2|=2c,則|F1F2|2=|PF1|2+|PF2|2得4c2=4b2+4(a22ab+b2)解得:b=a則c=故橢圓的離心率為:故答案為:點(diǎn)評(píng):本題涉及等量關(guān)系轉(zhuǎn)為不等關(guān)系,在與所求量有關(guān)的參量上作文章是實(shí)現(xiàn)轉(zhuǎn)化的關(guān)鍵,還有離心率的求解問(wèn)題,關(guān)鍵是根據(jù)題設(shè)條件獲得關(guān)于a,b,c的關(guān)系式,最后化歸為a,c(或e)的關(guān)系式,利用方程求解28(2011浙江)設(shè)F1,F(xiàn)2分別為橢圓+
43、y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若=5;則點(diǎn)A的坐標(biāo)是(0,1)考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:作出直線F1A的反向延長(zhǎng)線與橢圓交于點(diǎn)B,由橢圓的對(duì)稱(chēng)性,得,利用橢圓的焦半徑公式及向量共線的坐標(biāo)表示列出關(guān)于x1,x2的方程,解之即可得到點(diǎn)A的坐標(biāo)解答:解:方法1:直線F1A的反向延長(zhǎng)線與橢圓交于點(diǎn)B又由橢圓的對(duì)稱(chēng)性,得設(shè)A(x1,y1),B(x2,y2)由于橢圓的a=,b=1,c=e=,F(xiàn)1(,0)從而有:由于x1,x2,即=5=5 又三點(diǎn)A,F(xiàn)1,B共線,(,y10)=5(x2,0y2)由+得:x1=0代入橢圓的方程得:y1=1,點(diǎn)A的坐標(biāo)為(0,1)或(0,1
44、) 方法2:因?yàn)镕1,F(xiàn)2分別為橢圓的焦點(diǎn),則,設(shè)A,B的坐標(biāo)分別為A(xA,yA),B(xB,yB),若;則,所以,因?yàn)锳,B在橢圓上,所以,代入解得或,故A(0,1)故答案為:(0,1)點(diǎn)評(píng):本小題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的簡(jiǎn)單性質(zhì)、向量共線等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想29(2011江西)若橢圓的焦點(diǎn)在x軸上,過(guò)點(diǎn)(1,)做圓x2+y2=1的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn),則橢圓的方程是考點(diǎn):橢圓的標(biāo)準(zhǔn)方程菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:計(jì)算題;壓軸題分析:設(shè)出切點(diǎn)坐標(biāo),利用切點(diǎn)與原點(diǎn)的連線與切線垂直,列出方程得到AB的方程,將右焦點(diǎn)
45、坐標(biāo)及上頂點(diǎn)坐標(biāo)代入AB的方程,求出參數(shù)c,b;利用橢圓中三參數(shù)的關(guān)系求出a,求出橢圓方程解答:解:設(shè)切點(diǎn)坐標(biāo)為(m,n)則即m2+n2=1m即AB的直線方程為2x+y2=0線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn)2c2=0;b2=0解得c=1,b=2所以a2=5故橢圓方程為故答案為點(diǎn)評(píng):本題考查圓的切線的性質(zhì)、橢圓中三參數(shù)的關(guān)系:a2=b2+c230(2011臺(tái)灣)設(shè) E1:(其中a0)為焦點(diǎn)在(3,0),(3,0)的橢圓;E2:焦點(diǎn)在(3,0)且準(zhǔn)線為x=3的拋物線已知E1,E2的交點(diǎn)在直線x=3上,則 a=3+考點(diǎn):圓錐曲線的共同特征菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:綜合題;壓軸題;數(shù)形結(jié)合;轉(zhuǎn)化思想;綜合法分析:作出圖形,如圖,P到準(zhǔn)線的距離是6,可求得PF1的長(zhǎng)度,由勾股定理求得PF2,再由橢圓的定義求出橢圓的長(zhǎng)軸即可求得a解答:解:設(shè)P為拋物線E1與橢圓E2的交點(diǎn)P在E1上,根據(jù)拋物線的定義,P在E2上,根據(jù)橢圓的定義,P在直線x=3上,軸故故答案為:點(diǎn)評(píng):本題考查圓錐曲線的共同特征,解答本題關(guān)鍵是熟練掌握并會(huì)運(yùn)用橢圓的定義以及拋物線的定義,理解圖形中的垂直關(guān)系對(duì)解答本題也很重要將題設(shè)中的位置關(guān)系轉(zhuǎn)化成方程,考查了轉(zhuǎn)化化歸的思想
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高速公路SMA瀝青面層施工質(zhì)量控制QC
- 高血壓病例分析 ppt課件
- 單元2城市軌道交通車(chē)站
- 冪的乘方 (12)(精品)
- 安全__管理制度專(zhuān)項(xiàng)
- 物理教學(xué)中設(shè)疑提問(wèn)的方法
- 探索堿的性質(zhì)第三課時(shí)
- 2、《雅魯藏布大峽谷》課件
- 電力電子技術(shù)課件-第6章-交流交流變流電路-2011
- 新人教版二年級(jí)數(shù)學(xué)上冊(cè)第二單元《不進(jìn)位加法》
- 杜邦應(yīng)對(duì)危機(jī)的戰(zhàn)略變革
- 新人教版三年級(jí)數(shù)學(xué)上冊(cè)分米的認(rèn)識(shí)課件
- 服裝企業(yè)如何進(jìn)行流程績(jī)效的評(píng)估
- 提高箱梁梁板鋼筋保護(hù)層合格率全國(guó)優(yōu)秀QC
- 第五章第四部分工程項(xiàng)目管理資金管理案例分析(教材第