《(新課標(biāo))2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第2章 第11節(jié) 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(一)課時(shí)作業(yè) 理》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第2章 第11節(jié) 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(一)課時(shí)作業(yè) 理(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)作業(yè)(十四)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(一)一、選擇題1(2020山東高考預(yù)測)已知函數(shù)f(x)的定義域?yàn)镽,其導(dǎo)函數(shù)f(x)的圖象如圖所示,則對于任意x1,x2R(x1x2),下列結(jié)論正確的是()f(x)0恒成立;(x1x2)f(x1)f(x2)0;(x1x2)f(x1)f(x2)0;f;f.ABCD答案:D解析:由f(x)的圖象知,函數(shù)在R上為減函數(shù),且遞減的速度逐漸減慢,函數(shù)yf(x)的示意圖如圖所示由圖象知,正確故應(yīng)選D.2若函數(shù)ya(x3x)的遞減區(qū)間為,則a的取值范圍是()A(0,)B(1,0)C(1,)D(0,1)答案:A解析:ya(3x21),解3x210,得x0.故應(yīng)選A.3
2、(2020山西高考信息優(yōu)化卷)已知對任意mR,直線xym0都不是f(x)x33ax(aR)的切線,則a的取值范圍是()A.BC.D答案:B解析:由題意,得f(x)3x23a1,即ax2.xR,x2,解得a.故應(yīng)選B.4(2020惠州模擬)函數(shù)yf(x)是函數(shù)yf(x)的導(dǎo)函數(shù),且函數(shù)yf(x)在點(diǎn)P(x0,f(x0)處的切線為l:yg(x)f(x0)(xx0)f(x0),F(xiàn)(x)f(x)g(x),如果函數(shù)yf(x)在區(qū)間a,b上的圖象如圖所示,且ax0b,那么()AF(x0)0,xx0是F(x)的極大值點(diǎn)BF(x0)0,xx0是F(x)的極小值點(diǎn)CF(x0)0,xx0不是F(x)的極值點(diǎn)DF(
3、x0)0,xx0是F(x)的極值點(diǎn)答案:B解析:由題知,F(xiàn)(x)f(x)g(x)f(x)f(x0),F(xiàn)(x0)f(x0)f(x0)0.又當(dāng)xx0時(shí),從圖象上看,f(x)f(x0),即F(x)x0時(shí),函數(shù)F(x)為增函數(shù)故應(yīng)選B.5(2020湖南)若0x1x2ln x2ln x1Be x2e x1x1e x2Dx2e x1g(x2),x2e x1x1e x2.故應(yīng)選C.6(2020江西上饒模擬)已知f(x)x33xm,在區(qū)間0,2上任取三個(gè)數(shù)a,b,c,均存在以f(a),f(b),f(c)為邊長的三角形,則m的取值范圍是()A(2,)B(4,)C(6,)D(8,)答案:C解析:由f(x)3x23
4、0,得x11,x21(舍去),所以函數(shù)f(x)在區(qū)間0,1)上單調(diào)遞減,在區(qū)間(1,2上單調(diào)遞增,則f(x)minf(1)m2,由于f(0)m,f(2)m2,所以f(x)maxf(2)m2.由題意知,f(1)m20,由f(1)f(1)f(2),得42m2m,由,得m6,故應(yīng)選C.二、填空題7函數(shù)f(x)的單調(diào)遞減區(qū)間是_答案:(0,1),(1,e)解析:f(x),令f(x)0,得0x1或1xe,故函數(shù)的單調(diào)遞減區(qū)間是(0,1)和(1,e)8已知函數(shù)f(x)x33mx2nxm2在x1處有極值0,則mn_.答案:11解析:f(x)3x26mxn,由已知,可得或當(dāng)時(shí),f(x)3x26x33(x1)2
5、0恒成立,與x1是極值點(diǎn)矛盾,當(dāng)時(shí),f(x)3x212x93(x1)(x3),顯然x1是極值點(diǎn),符合題意,mn11.9(2020德州模擬)已知f(x)xex,g(x)(x1)2a,若x1,x2R,使得f(x2)g(x1)成立,則實(shí)數(shù)a的取值范圍是_答案:解析:x1,x2R,使得f(x2)g(x1)成立,f(x)的最小值小于或等于g(x)的最大值即可f(x)xex,f(x)(xex)exxex(1x)ex,當(dāng)x1時(shí),f(x)0,即f(x)在(1,)上為增函數(shù),當(dāng)x1時(shí),f(x)0,即f(x)在(,1)上為減函數(shù),f(x)minf(1)1e1.又g(x)(x1)2a,g(x)2(x1),在(,1)
6、上g(x)為增函數(shù),在(1,)上g(x)為減函數(shù),g(x)maxg(1)0aa,依題意可知,a.10(2020濟(jì)南模擬)已知函數(shù)f(x)的定義域?yàn)?,5,部分對應(yīng)值如下表:x1045f(x)1221f(x)的導(dǎo)函數(shù)yf(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:函數(shù)f(x)的值域?yàn)?,2;函數(shù)f(x)在0,2上是減函數(shù);如果當(dāng)x1,t時(shí),f(x)的最大值是2,那么t的最大值為4;當(dāng)1a2時(shí),函數(shù)yf(x)a有4個(gè)零點(diǎn)其中真命題為_(填寫序號)答案:解析:由yf(x)的圖象知,yf(x)在(1,0)上遞增,在(0,2)上遞減,在(2,4)上遞增,在(4,5)上遞減,故正確;當(dāng)x0與x4時(shí),
7、yf(x)取極大值,當(dāng)x2時(shí),yf(x)取極小值,因?yàn)閒(2)的值不確定,故不正確;對于,t的最大值為5.三、解答題11(2020山東)設(shè)函數(shù)f(x)aln x,其中a為常數(shù)(1)若a0,求曲線yf(x)在點(diǎn)(1,f(1)處的切線方程;(2)討論函數(shù)f(x)的單調(diào)性解:由題意知,當(dāng)a0時(shí),f(x),x(0,)此時(shí)f(x),可得f(1),又f(1)0,所以曲線yf(x)在(1,f(1)處的切線方程為x2y10.(2)函數(shù)f(x)的定義域?yàn)?0,)f(x).當(dāng)a0時(shí),f(x)0,函數(shù)f(x)在(0,)上單調(diào)遞增當(dāng)a0時(shí),令g(x)ax2(2a2)xa,由于(2a2)24a24(2a1),當(dāng)a時(shí),0
8、,f(x)0,函數(shù)f(x)在(0,)上單調(diào)遞減當(dāng)a時(shí),0,g(x)0,f(x)0,函數(shù)f(x)在(0,)上單調(diào)遞減當(dāng)a0時(shí),0.設(shè)x1,x2(x1x2)是函數(shù)g(x)的兩個(gè)零點(diǎn),則x1,x2.由x10,所以x(0,x1)時(shí),g(x)0,f(x)0,函數(shù)f(x)單調(diào)遞減;x(x1,x2)時(shí),g(x)0,f(x)0,函數(shù)f(x)單調(diào)遞增;x(x2,)時(shí),g(x)0,f(x)0,函數(shù)f(x)單調(diào)遞減綜上,當(dāng)a 0時(shí),函數(shù)f(x)在(0,)上單調(diào)遞增;當(dāng)a時(shí),函數(shù)f(x)在(0,)上單調(diào)遞減;當(dāng)a0時(shí),f(x)在,上單調(diào)遞減,在上單調(diào)遞增12(2020江西)已知函數(shù)f(x)(x2bxb)(bR)(1)
9、當(dāng)b4時(shí),求f(x)的極值;(2)若f(x)在區(qū)間上單調(diào)遞增,求b的取值范圍解:(1)當(dāng)b4時(shí),f(x),由f(x)0,得x2或x0.當(dāng)x(,2)時(shí),f(x)0,f(x)單調(diào)遞減;當(dāng)x(2,0)時(shí),f(x)0,f(x)單調(diào)遞增;當(dāng)x時(shí),f(x)0,f(x)單調(diào)遞減故當(dāng)x2時(shí)f(x)取得極小值,f(2)0,當(dāng)x0時(shí)f(x)取得極大值,f(0)4.(2)f(x),因?yàn)楫?dāng)x時(shí),0,依題意,當(dāng)x時(shí),有5x(3b2)0,從而(3b2)0,解得b.所以b的取值范圍為.13(2020福建漳州七校聯(lián)考)已知函數(shù)f(x)x3ax2bx(a,bR)圖象過點(diǎn)P(1,2),且f(x)在點(diǎn)P處的切線與直線y8x1平行(1)求a,b的值;(2)若f(x)m在1,1上恒成立,求正數(shù)m的取值范圍解:(1)f(x)3x22axb,由已知得即解得(2)由(1)知,f(x)x34x23x,若f(x)m在1,1上恒成立,只須f(x)maxm.f(x)3x28x3,令f(x)0,解得x或x3,則f(x)在和(,3)上單調(diào)遞增;令f(x)0,解得3x,則f(x)在上單調(diào)遞減,f(x)在上單調(diào)遞減,在上單調(diào)遞增又f(1)1436,f(1)1432,f(x)max6,則m6.由m0,得m26m50,解得m5或0m1.故m的取值范圍是(0,15,)