(通用版)2020版高考數(shù)學大一輪復習 第4講 函數(shù)的概念及其表示學案 理 新人教A版
《(通用版)2020版高考數(shù)學大一輪復習 第4講 函數(shù)的概念及其表示學案 理 新人教A版》由會員分享,可在線閱讀,更多相關《(通用版)2020版高考數(shù)學大一輪復習 第4講 函數(shù)的概念及其表示學案 理 新人教A版(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第4講 函數(shù)的概念及其表示 1.函數(shù)與映射的概念 函數(shù) 映射 兩集合A,B 設A,B是兩個 ? 設A,B是兩個 ? 對應關系 f:A→B 按照某種確定的對應關系f,使對于集合A中的 一個數(shù)x,在集合B中都有 的數(shù)f(x)與之對應? 按某一個確定的對應關系f,使對于集合A中的 一個元素x,在集合B中都有 的元素y與之對應? 名稱 稱 為從集合A到集合B的一個函數(shù)? 稱對應 為從集合A到集合B的一個映射? 記法 y=f(x),x∈A 對應f:A→B 2.函數(shù)的三要素 函數(shù)由 、 和對應關系三個要素
2、構成.在函數(shù)y=f(x),x∈A中,x叫作自變量,x的取值范圍A叫作函數(shù)的 .與x的值相對應的y值叫作函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫作函數(shù)的 .? 3.函數(shù)的表示法 函數(shù)的常用表示方法: 、 、 .? 4.分段函數(shù) 若函數(shù)在其定義域內,對于定義域內的不同取值區(qū)間,有著不同的 ,這樣的函數(shù)通常叫作分段函數(shù).分段函數(shù)雖由幾個部分組成,但它表示的是一個函數(shù).? 常用結論 1.常見函數(shù)的定義域 (1)分式函數(shù)中分母不等于0. (2)偶次根式函數(shù)的被開方式大于或等于0. (3)一次函數(shù)、二次函數(shù)的定義域為R. (4)零次冪的底數(shù)不能
3、為0. (5)y=ax(a>0且a≠1),y=sin x,y=cos x的定義域均為R. (6)y=logax(a>0,a≠1)的定義域為{x|x>0}. (7)y=tan x的定義域為xx≠kπ+π2,k∈Z. 2.抽象函數(shù)的定義域 (1)若f(x)的定義域為[m,n],則在f[g(x)]中,m≤g(x)≤n,從而解得x的范圍,即為f[g(x)]的定義域. (2)若f[g(x)]的定義域為[m,n],則由m≤x≤n確定g(x)的范圍,即為f(x)的定義域. 3.基本初等函數(shù)的值域 (1)y=kx+b(k≠0)的值域是R. (2)y=ax2+bx+c(a≠0)的值域:當a>0
4、時,值域為4ac-b24a,+∞;當a<0時,值域為-∞,4ac-b24a. (3)y=kx(k≠0)的值域是{y|y≠0}. (4)y=ax(a>0且a≠1)的值域是(0,+∞). (5)y=logax(a>0且a≠1)的值域是R. 題組一 常識題 1.[教材改編] 以下屬于函數(shù)的有 .(填序號)? ①y=±x;②y2=x-1;③y=x-2+1-x;④y=x2-2(x∈N). 2.[教材改編] 已知函數(shù)f(x)=x+1,x≥0,x2,x<0,則f(-2)= ,f[f(-2)]= .? 3.[教材改編] 函數(shù)f(x)=8-xx+3的定義域是 .? 4
5、.[教材改編] 已知集合A={1,2,3,4},B={a,b,c},f:A→B為從集合A到集合B的一個函數(shù),那么該函數(shù)的值域C的不同情況有 種.? 題組二 常錯題 ◆索引:求函數(shù)定義域時非等價化簡解析式致錯;分段函數(shù)解不等式時忘記范圍;換元法求解析式,反解忽視范圍;對函數(shù)值域理解不透徹致錯. 5.函數(shù)y=x-2·x+2的定義域是 .? 6.設函數(shù)f(x)=(x+1)2,x<1,4-x-1,x≥1,則使得f(x)≥1的自變量x的取值范圍為 .? 7.已知f(x)=x-1,則f(x)= .? 8.若一系列函數(shù)的解析式相同、值域相同,但其定義域不同,
6、則稱這些函數(shù)為“同族函數(shù)”,那么函數(shù)解析式為y=x2,值域為{1,4}的“同族函數(shù)”共有 個.? 探究點一 函數(shù)的定義域 角度1 求給定函數(shù)解析式的定義域 例1 (1)函數(shù)f(x)=ln(x2-x)的定義域為 ( ) A.(0,1] B.[0,1] C.(-∞,0)∪(1,+∞) D.(-∞,0)∪[1,+∞) (2)函數(shù)f(x)=1-2x+1x+3的定義域為 ( ) A.(-3,0] B.(-3,1] C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1] ? ? ? [總結反思] (1)求函數(shù)
7、定義域即求使解析式有意義的自變量x的取值集合;(2)若函數(shù)是由幾個基本初等函數(shù)的和、差、積、商的形式構成時,定義域一般是各個基本初等函數(shù)定義域的交集;(3)具體求解時一般是列出自變量滿足的不等式(組),得出不等式(組)的解集即可;(4)注意不要輕易對解析式化簡變形,否則易出現(xiàn)定義域錯誤. 角度2 求抽象函數(shù)的定義域 例2 (1)若函數(shù)y=f(x)的定義域是[0,2], 則函數(shù)g(x)=f(2x)lnx的定義域是 ( ) A.[0,1] B.[0,1) C.[0,1)∪(1,4] D.(0,1) (2)若函數(shù)f(x2+1)的定義域為[-1,1],則f(lg x)的定義域為 ( )
8、 A.[-1,1] B.[1,2] C.[10,100] D.[0,lg 2] ? ? ? [總結反思] (1)無論抽象函數(shù)的形式如何,已知定義域還是求定義域均是指其中的x的取值集合;(2)同一問題中、同一法則下的范圍是一致的,如f[g(x)]與f[h(x)],其中g(x)與h(x)的范圍(即它們的值域)一致. 變式題 (1)若函數(shù)y=f(x)的定義域為(0,1),則f(x+1)的定義域為 ( ) A.(-1,0) B.(0,1) C.(1,2) D.(-1,1) (2)已知函數(shù)y=f(x2-1)的定義域為[-3,3],則函數(shù)y=f(x)的定義域為 .? 探究
9、點二 函數(shù)的解析式 例3 (1)已知f(x+1)=3x+2,則函數(shù)f(x)的解析式是( ) A.f(x)=3x-1 B.f(x)=3x+1 C.f(x)=3x+2 D.f(x)=3x+4 (2)已知二次函數(shù)f(x)滿足f(x+1)-f(x)=-2x+1,且f(2)=15,則函數(shù)f(x)= .? (3)設函數(shù)f(x)對不為0的一切實數(shù)x均有f(x)+2f2018x=3x,則f(x)= .? ? ? ? [總結反思] 求函數(shù)解析式的常用方法: (1)換元法:已知復合函數(shù)f[g(x)]的解析式,可用換元法,此時要注意新元的取值范圍. (2)待定系數(shù)法:已知函
10、數(shù)的類型(如一次函數(shù)、二次函數(shù)),可用待定系數(shù)法. (3)配湊法:由已知條件f[g(x)]=F(x),可將F(x)改寫成關于g(x)的表達式,然后以x替代g(x),便得f(x)的解析式. (4)解方程組法:已知f(x)與f1x或f(-x)之間的關系式,可根據(jù)已知條件再構造出另外一個等式,兩等式組成方程組,通過解方程組求出f(x). 變式題 (1)已知函數(shù)f(2x-1)=4x+3,且f(t)=6,則t= ( ) A.12 B.13 C.14 D.15 (2)若f(x)對于任意實數(shù)x恒有3f(x)-2f(-x)=5x+1,則f(x)= ( ) A.x+1 B.x-1 C.2x+
11、1 D.3x+3 (3)若f(x)為一次函數(shù),且f[f(x)]=4x+1,則f(x)= .? 探究點三 以分段函數(shù)為背景的問題 微點1 分段函數(shù)的求值問題 例4 (1)[2018·衡水調研] 設函數(shù)f(x)=x+1,x≥0,12x,x<0,則f[f(-1)]= ( ) A.32 B.2+1 C.1 D.3 (2)已知函數(shù)f(x)=2x,x<2,f(x-1),x≥2,則f(log27)= .? ? ? ? [總結反思] 求分段函數(shù)的函數(shù)值時務必要確定自變量所在的區(qū)間及其對應關系.對于復合函數(shù)的求值問題,應由里到外依次求值. 微點2 分段函數(shù)與方程
12、 例5 (1)已知函數(shù)f(x)=(3+a)x+a,x<1,logax,x≥1,若f[f(1)]=3,則a= ( ) A.2 B.-2 C.-3 D.3 (2)函數(shù)f(x)=2x,x≤0,x-lnx,x>0,若f(0)+f(a)=2,則a的值為 .? ? ? ? [總結反思] (1)若分段函數(shù)中含有參數(shù),則直接根據(jù)條件選擇相應區(qū)間上的解析式代入求參;(2)若是求自變量的值,則需要結合分段區(qū)間的范圍對自變量進行分類討論,再求值. 微點3 分段函數(shù)與不等式問題 例6 (1)[2018·惠州二模] 設函數(shù)f(x)=2-x-1,x≤0,x12,x>0,若f(x0)>1,則x0
13、的取值范圍是 ( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-2)∪(0,+∞)
D.(-∞,-1)∪(1,+∞)
(2)[2018·全國卷Ⅰ] 設函數(shù)f(x)=2-x,x≤0,1,x>0,則滿足f(x+1) 14、1】若函數(shù)f(x)=2x+1,x<0,x,x≥0,則f(1)+f(-1)=( )
A.0 B.2
C.-2 D.1
2.【微點2】設函數(shù)f(x)=22x-1+3,x≤0,1-log2x,x>0,若f(a)=4,則實數(shù)a的值為 ( )
A.12 B.18
C.12或18 D.116
3.【微點3】已知函數(shù)f(x)=3+log2x,x>0,x2-x-1,x≤0,則不等式f(x)≤5的解集為 ( )
A.[-1,1]
B.[-2,4]
C.(-∞,-2]∪(0,4)
D.(-∞,-2]∪[0,4]
4.【微點3】[2018·湖北咸寧聯(lián)考] 已知函數(shù)f(x)=x2-2 15、x,x≥0,1x,x<0,則不等式f(x)≤x的解集為 ( )
A.[-1,3]
B.(-∞,-1]∪[3,+∞)
C.[-3,1]
D.(-∞,-3]∪[1,+∞)
5.【微點2】設函數(shù)f(x)=3x-b,x<1,2x,x≥1,若ff56=4,則b= .?
第4講 函數(shù)的概念及其表示
考試說明 1.了解構成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念.
2.在實際情境中,會根據(jù)不同的需求選擇恰當?shù)姆椒?如圖像法,列表法,解析法)表示函數(shù).
3.了解簡單的分段函數(shù),并能簡單應用(函數(shù)分段不超過三段).
【課前雙基 16、鞏固】
知識聚焦
1.非空數(shù)集 非空集合 任意 唯一確定 任意 唯一確定 f:A→B f:A→B
2.定義域 值域 定義域 值域
3.解析法 圖像法 列表法
4.對應關系
對點演練
1.④ [解析] ①②對于定義域內任給的一個數(shù)x,可能有兩個不同的y值,不滿足對應的唯一性,故①②錯.③的定義域是空集,而函數(shù)的定義域是非空的數(shù)集,故③錯.只有④表示函數(shù).
2.4 5 [解析] 因為f(-2)=(-2)2=4,所以f[f(-2)]=f(4)=4+1=5.
3.(-∞,-3)∪(-3,8] [解析] 要使函數(shù)有意義,需8-x≥0且x+3≠0,即x≤8且x≠-3,所以其定義域是(-∞ 17、,-3)∪(-3,8].
4.7 [解析] 只含有一個元素時有{a},,{c};有兩個元素時,有{a,b},{a,c},{b,c};有三個元素時,有{a,b,c}.所以值域C共有7種不同情況.
5.{x|x≥2} [解析] 要使函數(shù)有意義,需x-2≥0,x+2≥0,解得x≥2,即定義域為{x|x≥2}.
6.(-∞,-2]∪[0,10] [解析] ∵f(x)是分段函數(shù),∴f(x)≥1應分段求解.
當x<1時,f(x)≥1?(x+1)2≥1?x≤-2或x≥0,∴x≤-2或0≤x<1.
當x≥1時,f(x)≥1?4-x-1≥1,即x-1≤3,∴1≤x≤10.
綜上所述,x≤-2 18、或0≤x≤10,即x∈(-∞,-2]∪[0,10].
7.x2-1(x≥0) [解析] 令t=x,則t≥0,x=t2,所以f(t)=t2-1(t≥0),即f(x)=x2-1(x≥0).
8.9 [解析] 設函數(shù)y=x2的定義域為D,其值域為{1,4},D的所有可能的個數(shù),即是同族函數(shù)的個數(shù),D的所有可能為{-1,2},{-1,-2},{1,2},{1,-2},{-1,1,2},{-1,1,-2},{-1,2,-2},{1,2,-2},{-1,1,2,-2},共9個,故答案為9.
【課堂考點探究】
例1 [思路點撥] (1)根據(jù)對數(shù)式的真數(shù)大于0求解;(2)根據(jù)二次根式的被開方數(shù)非負及分 19、母不為0求解.
(1)C (2)A [解析] (1)由x2-x>0,得x>1或x<0,所以定義域為(-∞,0)∪(1,+∞).
(2)由題意,自變量x應滿足1-2x≥0,x+3>0,解得x≤0,x>-3,故函數(shù)的定義域為(-3,0].
例2 [思路點撥] (1)由f(x)的定義域得f(2x)的定義域,再結合ln x≠0求解;(2)由x∈[-1,1],求得x2+1的范圍是[1,2],再由1≤lg x≤2即可得函數(shù)f(lg x)的定義域.
(1)D (2)C [解析] (1)∵f(x)的定義域為[0,2],∴要使f(2x)有意義,則有0≤2x≤2,∴0≤x≤1,∴要使g(x)有意義,應有0 20、≤x≤1,lnx≠0,∴0 21、湊法將3x+2配湊成3(x+1)-1;(2)設出二次函數(shù),利用待定系數(shù)法,根據(jù)等式恒成立求出待定系數(shù)即可;(3)構造含f(x)和f2018x的方程組,消去f2018x即可得f(x)的解析式.
(1)A (2)-x2+2x+15 (3)4036x-x [解析] (1)由于f(x+1)=3(x+1)-1,所以f(x)=3x-1.
(2)由已知令f(x)=ax2+bx+c(a≠0),則f(x+1)-f(x)=2ax+b+a=-2x+1,
∴2a=-2,a+b=1,∴a=-1,b=2,又f(2)=15,∴c=15,∴f(x)=-x2+2x+15.
(3)f(x)+2f2018x=3x①,且x≠ 22、0,
用2018x代替①中的x,得f2018x+2f(x)=3×2018x②,
解①②組成的方程組,消去f2018x得f(x)=4036x-x.
變式題 (1)A (2)A (3)2x+13或-2x-1 [解析] (1)設t=2x-1,則x=t+12,
故f(t)=4×t+12+3=2t+5,
令2t+5=6,則t=12,故選A.
(2)因為3f(x)-2f(-x)=5x+1①,所以3f(-x)-2f(x)=-5x+1②,聯(lián)立①②,解得f(x)=x+1,故選A.
(3)設f(x)=ax+b(a≠0),由f[f(x)]=af(x)+b=a2x+ab+b=4x+1,得a2=4,ab 23、+b=1,解得a=2,b=13或a=-2,b=-1,∴f(x)=2x+13或f(x)=-2x-1.
例4 [思路點撥] (1)先求f(-1)的值,再求f[f(-1)]的值;(2)先估算log27的范圍,再確定選用哪段解析式求值.
(1)D (2)72 [解析] (1)由題意可得f(-1)=12-1=2,∴f[f(-1)]=f(2)=3,故選D.
(2)因為2 24、a>0兩種情況討論求解.
(1)D (2)0或1 [解析] (1)根據(jù)題意可知f(1)=loga1=0,所以f[f(1)]=f(0)=(3+a)×0+a=a=3,
即a=3,故選D.
(2)∵f(x)=2x,x≤0,x-lnx,x>0,∴f(0)=20=1.
當a>0時,f(a)=a-ln a,則有1+a-ln a=2,解得a=1;
當a≤0時,f(a)=2a,則有1+2a=2,解得a=0.
例6 [思路點撥] (1)分x0≤0和x0>0兩種情況討論求解;(2)根據(jù)題中所給的函數(shù)解析式,將函數(shù)圖像畫出來,結合圖像可得不等式成立的條件.
(1)D (2)D [解析] (1)當x0≤ 25、0時,由f(x0)=2-x0-1>1,即2-x0>2,解得x0<-1;
當x0>0時,由f(x0)=x012>1,解得x0>1.
∴x0的取值范圍是(-∞,-1)∪(1,+∞).
(2)f(x)的圖像如圖所示.當x+1≤0,2x≤0,即x≤-1時,若滿足f(x+1) 26、)=4,所以22a-1+3=4,a≤0或1-log2a=4,a>0,
所以a=12,a≤0或a=18,a>0,所以a=18,故選B.
3.B [解析] 由于f(x)=3+log2x,x>0,x2-x-1,x≤0,
所以當x>0時,3+log2x≤5,即log2x≤2=log24,得0 27、析] 由ff56=4,可得f52-b=4.
若52-b≥1,即b≤32,可得252-b=4,解得b=12.
若52-b<1,即b>32,可得3×52-b-b=4,解得b=78<32(舍去).故答案為12.
【備選理由】 例1考查給定函數(shù)解析式,求抽象函數(shù)的定義域問題;例2考查分段函數(shù)的求值,但涉及三角函數(shù)及函數(shù)的周期性;例3考查分段函數(shù)與方程問題,先分析參數(shù)的范圍,可以避免分類討論;例4是對函數(shù)值域的考查,依據(jù)分段函數(shù)的值域求參數(shù),是對已有例題的有效補充,值得探究和思考.
例1 [配合例2使用] [2018·邵陽期末] 設函數(shù)f(x)= 28、log2(x-1)+2-x,則函數(shù)fx2的定義域為( )
A.(1,2] B.(2,4]
C.[1,2) D.[2,4)
[解析] B 要使函數(shù)f(x)有意義,則需2-x≥0,x-1>0?1 29、知當x<1時,f(x)是周期為6的周期函數(shù),
則f(-2018)=f(-336×6-2)=f(-2)=-f(-2+3)=-f(1).而當x≥1時,f(x)=x2+sinπ2x,∴f(1)=2,
∴f(-2018)=-f(1)=-2.
例3 [配合例5使用] 已知f(x)=1x-1,x>1,x+1,x≤1,若f(1-a)=f(1+a)(a>0),則實數(shù)a的值為 .?
[答案] 1
[解析] ∵a>0,∴1-a<1,1+a>1,∴由f(1-a)=f(1+a)得2-a=1a,即a2-2a+1=0,∴a=1.
例4 [補充使用] [2018·武邑中學模擬] 若函數(shù)f(x)=x+a,x≤2,log4x,x>2的值域為R,則a的取值范圍是 .?
[答案] a≥-32
[解析] ∵f(x)=log4x在x>2時的值域為12,+∞,
∴f(x)=x+a在x≤2時的最大值必須大于等于12,
即滿足2+a≥12,解得a≥-32.
故答案為a≥-32.
12
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。