江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 應(yīng)用題 第1講 函數(shù)、不等式中的應(yīng)用題學(xué)案
《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 應(yīng)用題 第1講 函數(shù)、不等式中的應(yīng)用題學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 應(yīng)用題 第1講 函數(shù)、不等式中的應(yīng)用題學(xué)案(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題七 應(yīng)用題 第1講 函數(shù)、不等式中的應(yīng)用題學(xué)案 [考情考向分析] 應(yīng)用題考查是江蘇高考特色,每年均有考查,試題難度中等或中等偏上.命題主要考查學(xué)生運用所學(xué)知識建立數(shù)學(xué)相關(guān)模型解決實際問題的能力. 與函數(shù)、不等式有關(guān)的應(yīng)用題,可以通過建立函數(shù)、不等式模型,解決實際中的優(yōu)化問題或者滿足特定條件的實際問題. 熱點一 和函數(shù)有關(guān)的應(yīng)用題 例1 某工廠現(xiàn)有200人,人均年收入為4萬元.為了提高工人的收入,工廠將進行技術(shù)改造.若改造后,有x(100≤x≤150)人繼續(xù)留用,他們的人均年收入為4a(a∈N*)萬元;剩下的人從事其他服務(wù)行業(yè),這些人的人均年收入有望
2、提高2x%. (1)設(shè)技術(shù)改造后這200人的人均年收入為y萬元,求出y與x之間的函數(shù)關(guān)系式; (2)當(dāng)x為多少時,能使這200人的人均年收入達到最大,并求出最大值. 解 (1)y= = =-[x-25(a+3)]2+(a+3)2+4. 其中100≤x≤150,x∈N*. (2)①當(dāng)100≤25(a+3)≤150,即1≤a≤3,a∈N*時, 當(dāng)x=25(a+3)時,y取最大值,即ymax=(a+3)2+4; ②當(dāng)25(a+3)>150,即a>3,a∈N*時, 函數(shù)y在[100,150]上單調(diào)遞增, ∴當(dāng)x=150時,y取最大值,即ymax=3a+4. 答 當(dāng)1≤a≤3,a
3、∈N*,x=25(a+3)時,y取最大值(a+3)2+4; 當(dāng)a>3,a∈N*,x=150時,y取最大值3a+4. 思維升華 二次函數(shù)是高考數(shù)學(xué)應(yīng)用題命題的一個重要模型,解決此類問題要充分利用二次函數(shù)的結(jié)論和性質(zhì). 跟蹤演練1 某企業(yè)參加A項目生產(chǎn)的工人為1 000人,平均每人每年創(chuàng)造利潤10萬元.根據(jù)現(xiàn)實的需要,從A項目中調(diào)出x人參與B項目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤10萬元(a>0),A項目余下的工人每人每年創(chuàng)造利潤需要提高0.2x%. (1)若要保證A項目余下的工人創(chuàng)造的年總利潤不低于原來1 000名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加B項目從事售后服務(wù)工作? (2
4、)在(1)的條件下,當(dāng)從A項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的40%時,能使得A項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)a的取值范圍. 解 (1)根據(jù)題意可得(1 000-x)(10+10×0.2x%)≥1 000×10, 整理得x2-500x≤0,解得0≤x≤500, 最多調(diào)出的人數(shù)為500. (2)由解得0≤x≤400. 10×x≤(1 000-x)·(10+10×0.2x%) 對x∈[0,400]恒成立, 即10ax-≤1 000×10+20x-10x-2x2%恒成立, 即ax≤+x+1 000對于任意的x∈[0,400]恒成立. 當(dāng)x=0時,
5、不等式顯然成立; 當(dāng)0<x≤400時, a≤++1=+1. 令函數(shù)f(x)=x+, 可知f(x)在區(qū)間[0,400]上是減函數(shù), 故f(x)min=f(400)=1 025, 故++1≥. 故0<a≤,所以實數(shù)a的取值范圍是. 熱點二 和不等式有關(guān)的應(yīng)用題 例2 秸稈還田是當(dāng)今世界上普遍重視的一項培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時還有增肥增產(chǎn)作用.某農(nóng)機戶為了達到在收割的同時讓秸稈還田,花137 600元購買了一臺新型聯(lián)合收割機,每年用于收割可以收入6萬元(已減去所用柴油費);該收割機每年都要定期進行維修保養(yǎng),第一年由廠方免費維修保養(yǎng),第二年及以后由該
6、農(nóng)機戶付費維修保養(yǎng),所付費用y(元)與使用年數(shù)n的關(guān)系為y=kn+b(n≥2,且n∈N*),已知第二年付費1 800元,第五年付費6 000元. (1)試求出該農(nóng)機戶用于維修保養(yǎng)的費用f(n)(元)與使用年數(shù)n(n∈N*)的函數(shù)關(guān)系式; (2)這臺收割機使用多少年,可使年平均收益最大?(收益=收入-維修保養(yǎng)費用-購買機械費用) 解 (1)依題意知,當(dāng)n=2時,y=1 800; 當(dāng)n=5時,y=6 000, 即解得 所以f(n)= (2)記使用n年,年均收益為W(元), 則依題意知,當(dāng)n≥2時,W=60 000-[137 600+1 400(2+3+…+n)-1 000(n-1)
7、] =60 000- =60 000-(137 200+700n2-300n) =60 300-≤60 300-2=40 700, 當(dāng)且僅當(dāng)700n=,即n=14時取等號. 所以這臺收割機使用14年,可使年均收益最大. 思維升華 運用基本不等式求解應(yīng)用題時,要注意構(gòu)造符合基本不等式使用的形式,同時要注意等號成立的條件. 跟蹤演練2 小張于年初支出50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小張在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售收入為
8、(25-x)萬元(國家規(guī)定大貨車的報廢年限為10年). (1)大貨車運輸?shù)降趲啄昴甑?,該車運輸累計收入超過總支出? (2)在第幾年年底將大貨車出售,能使小張獲得的年平均利潤最大? (利潤=累計收入+銷售收入-總支出) 解 (1)設(shè)大貨車到第x年年底的運輸累計收入與總支出的差為y萬元, 則y=25x-[6x+x(x-1)]-50,0<x≤10,x∈N*, 即y=-x2+20x-50,0<x≤10,x∈N*, 由-x2+20x-50>0, 解得10-5<x<10+5,而2<10-5<3, 故從第三年開始運輸累計收入超過總支出. (2)因為利潤=累計收入+銷售收入-總支出,所以銷
9、售二手貨車后,小張的年平均利潤為 =[y+(25-x)]=(-x2+19x-25) =19-, 又19-≤19-2=9, 當(dāng)且僅當(dāng)x=5時等號成立. 答 第5年年底出售貨車,獲得的年平均利潤最大. 熱點三 和三角函數(shù)有關(guān)的應(yīng)用題 例3 (2018·鎮(zhèn)江期末)如圖,準(zhǔn)備在墻上釘一個支架,支架由兩直桿AC與BD焊接而成,焊接點D把桿AC分成AD,CD兩段,其中兩固定點A,B間距離為1米, AB與桿AC的夾角為60°,桿AC長為1米,若制作AD段的成本為a元/米,制作CD段的成本是2a元/米,制作桿BD成本是4a元/米.設(shè)∠ADB=α,則制作整個支架的總成本記為S元. (1)求S
10、關(guān)于α的函數(shù)表達式,并求出α的取值范圍; (2)問AD段多長時,S最?。? 解 (1)在△ABD中,由正弦定理得==, ∴BD=, AD=+, 則S=a+ 2a + 4a=a, 由題意得α∈. (2)令S′=a·=0,設(shè)cos α0=. α α0 cos α S′ - 0 + S 極小值 ∴當(dāng)cos α=時, S最小,此時sin α=, AD=+=. 思維升華 諸如航行、建橋、測量、人造衛(wèi)星等涉及一定圖形屬性的應(yīng)用問題,常常需要應(yīng)用幾何圖形的性質(zhì),用三角函數(shù)知識來求解. 跟蹤演練3 某單位將舉辦慶典活動,要在廣場上豎立一
11、形狀為等腰梯形的彩門BADC(如圖).設(shè)計要求彩門的面積為S(單位:m2),高為h(單位:m)(S,h為常數(shù)).彩門的下底BC固定在廣場底面上,上底和兩腰由不銹鋼支架構(gòu)成,設(shè)腰和下底的夾角為α,不銹鋼支架的長度和記為l. (1)請將l表示成關(guān)于α的函數(shù)l=f(α); (2)問當(dāng)α為何值時l最小,并求最小值. 解 (1)過D作DH⊥BC于點H,如圖所示. 則∠DCB=α,DH=h, 則DC=,CH=. 設(shè)AD=x,BC=x+. 因為S=·h,則x=-, 則l=f(α)=2DC+AD =+h. (2)由(1)可知,l=f(α)=+h, 則f′(α)=h·=h·, 令
12、f′(α)=h·=0,得α=.
α
f′(α)
-
0
+
f(α)
極小值
所以lmin=f?=h+.
1.某學(xué)校有長度為14 m 的舊墻一面,現(xiàn)準(zhǔn)備利用這面舊墻建造平面圖形為矩形、面積為126 m2的活動室,工程條件是:①建1 m新墻的費用為a元;②修1 m舊墻的費用是元;③ 拆去1 m舊墻所得的材料,建1 m新墻的費用為元,經(jīng)過討論有兩種方案:
(1)利用舊墻的一段x m(0 13、
解 設(shè)利用舊墻的一面邊長為x m,
則矩形另一邊長為 m.
(1)當(dāng)0<x<14時,
總費用f(x)=x+(14-x)+a
=7a≥35a,
當(dāng)且僅當(dāng)x=12時取最小值35a.
(2)當(dāng)x≥14時,
總費用f(x)=×14+a
=2a,
則f′(x)=2a>0,
故f(x)在[14,+∞)上單調(diào)遞增,
所以當(dāng)x=14時取最小值35.5a.
答 第(1)種方案最省,即當(dāng)x=12 m時,總費用最省,為35a元.
2.某油庫的容量為31萬噸,年初儲油量為10萬噸,從年初起計劃每月月初先購進石油m萬噸,然后再調(diào)出一部分石油來滿足區(qū)域內(nèi)和區(qū)域外的需求.若區(qū)域內(nèi)每月用石油1萬 14、噸,區(qū)域外前x個月的需求量y(萬噸)與x的函數(shù)關(guān)系為y=5+(p>0,1≤x≤10,x∈N*).已知前4個月區(qū)域外的需求量為15萬噸.
(1)試寫出第x個月石油調(diào)出后,油庫內(nèi)儲油量M(x)(萬噸)的函數(shù)表達式;
(2)要使油庫中的石油在前10個月內(nèi)任何時候都不超出油庫的容量,又能滿足區(qū)域內(nèi)和區(qū)域外的需求,求m的取值范圍.
解 (1)因為前4個月區(qū)域外的需求量為15萬噸,
所以15=5+,
則p=25,y=5+5(1≤x≤10,x∈N*).
M(x)=10+mx-x-(5+5)=mx-x-5+5
(1≤x≤10,x∈N*).
(2)因為第x個月的月初購進石油后,儲油量不能多于31 15、萬噸,所以M(x-1)+m≤31,
即10+mx-(x-1)-(5+5)≤31,
則mx-x-5≤25,
此式對一切1≤x≤10(x∈N*)恒成立,
令=t,
則m≤+1(t=,k=0,1,…,9)恒成立,
令u=t+5,m≤+1(u=5+,k=0,1,…,9)恒成立,
因為u+-10在u=8時取得最大值,
所以+1的最小值為5,則m≤5.
另一方面,第x個月調(diào)出石油后,儲油量不能少于0萬噸,
所以M(x)≥0,即mx-x-5+5≥0.
即m≥-++1,
此式對一切1≤x≤10(x∈N*)恒成立,
所以m≥-52+,
此式對一切1≤x≤10(x∈N*)恒成立,
則 16、m≥(x=4時取等號).
綜上所述,≤m≤5
答 每月購進石油m的取值范圍是.
A組 專題通關(guān)
1.某公司生產(chǎn)的A種產(chǎn)品,它的成本是2元,售價是3元,年銷售量為100萬件.為獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告.根據(jù)經(jīng)驗,每年投入的廣告費是x(單位:十萬元)時,產(chǎn)品的年銷售量將是原銷售量的y倍,且y是x的二次函數(shù),它們的關(guān)系如下表
x(十萬元)
0
1
2
…
y
1
1.5
1.8
…
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果把利潤看作是銷售總額減去成本費和廣告費,試寫出年利潤S(十萬元)與廣告費x(十萬元)的函數(shù)關(guān)系式;
(3)如果投入 17、的年廣告費為x,x∈[10,30]萬元,問廣告費在什么范圍內(nèi),公司獲得的年利潤隨廣告費的增大而增大?
解 (1)設(shè)二次函數(shù)的解析式為y=ax2+bx+c(a≠0).
由關(guān)系表,得解得
∴函數(shù)的解析式為y=-x2+x+1(x≥0).
(2)根據(jù)題意,得S=10y(3-2)-x=-x2+5x+10(x≥0).
(3)S=-x2+5x+10=-2+,
∵1≤x≤3,∴當(dāng)1≤x≤2.5時,S隨x的增大而增大.
故當(dāng)年廣告費為10~25萬元之間,公司獲得的年利潤隨廣告費的增大而增大.
2.在一張足夠大的紙板上截取一個面積為3 600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去 18、邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設(shè)小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時,求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
解 (1)因為矩形紙板ABCD的面積為3 600平方厘米,
故當(dāng)a=90時,b=40,
從而包裝盒子的側(cè)面積
S=2×x(90-2x)+2×x(40-2x)
=-8x2+260x,x∈(0,20) .
因為S=-8x2+260x=-82+,
故當(dāng)x= 時,側(cè)面積最大,最大值為平方厘米.
(2)包裝盒子的 19、體積V=(a-2x)(b-2x)x
=x[ab-2(a+b)x+4x2],x∈,b≤60.
V=x[ab-2(a+b)x+4x2]≤x(ab-4x+4x2)
=x(3 600-240x+4x2)=4x3-240x2+3 600x.
當(dāng)且僅當(dāng)a=b=60時等號成立.
設(shè)f (x)=4x3-240x2+3 600x,x∈(0,30).
則f′(x)=12(x-10)(x-30).
于是當(dāng)0<x<10時,f′(x)>0,
所以f (x)在(0,10)上單調(diào)遞增;
當(dāng)10<x<30時,f′(x)<0,
所以f (x)在(10,30)上單調(diào)遞減.
因此當(dāng)x=10時,f(x)有最大值 20、f(10)=16 000,
此時a=b=60,x=10.
所以當(dāng)a=b=60,x=10時紙盒的體積最大,最大值為16 000立方厘米.
3.(2018·蘇州模擬)某“T” 型水渠南北向?qū)挒? m,東西向?qū)挒?m,其俯視圖如圖所示.假設(shè)水渠內(nèi)的水面始終保持水平位置.
(1)過點A的一條直線與水渠的內(nèi)壁交于P,Q兩點,且與水渠的一邊的夾角為θ(θ為銳角),將線段PQ的長度l表示為θ的函數(shù);
(2)若從南面漂來一根長度為7 m的筆直的竹竿(粗細不計),竹竿始終浮于水平面內(nèi),且不發(fā)生形變,問:這根竹竿能否從拐角處一直漂向東西向的水渠(不會卡住)?試說明理由.
解 (1)由題意得,PA= 21、,QA=,
所以l=PA+QA=+.
(2)設(shè)f(θ)=+,
由f′(θ)=-+=,
令f′(θ)=0,得tan θ0=.
且當(dāng)θ∈(0,θ0)時,f′<0;當(dāng)θ∈時,f′(θ)>0,
所以f在上單調(diào)遞減,在上單調(diào)遞增,
所以當(dāng)θ=θ0時,f取得極小值,即為最小值.
當(dāng)tan θ0=時,sin θ0=,cos θ0=,
所以f的最小值為3,
即這根竹竿能通過拐角處的長度的最大值為3 m.
因為3>7,所以這根竹竿能從拐角處一直漂向東西向的水渠.
答 竹竿能從拐角處一直漂向東西向的水渠.
4.(2018·江蘇啟東中學(xué)月考)園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為r米,圓 22、心角為θ(弧度)的扇形觀景水池,其中θ∈, O為扇形AOB的圓心,同時緊貼水池周邊(即 OA,OB和θ所對的圓弧)建設(shè)一圈理想的無寬度步道.要求總預(yù)算費用不超過24萬元,水池造價為每平方米400元,步道造價為每米1 000元.
(1)若總費用恰好為24萬元,則當(dāng)r和θ分別為多少時,可使得水池面積最大,并求出最大面積;
(2)若要求步道長為105米,則可設(shè)計出的水池最大面積是多少?
解 (1)弧長AB為θr,扇形AOB面積為S=θr2,
則400×θr2+1 000=240 000.
即θr2+5=1 200.
所以θ=.
S=θr2=××r2=650-5≤650-5×2=4 23、00.
當(dāng)且僅當(dāng)r+5=,即r=20時取等號,此時θ=2∈.
答 r=20, θ=2,面積最大值為400平方米.
(2) 由θr+2r=105,得出θ=,
∴S=θr2=r,
所以
所以所以45≤r<.
∴S=θr2=r, r∈,
所以當(dāng)r=45, θ=時,水池的最大面積為337.5平方米.
答 r的取值范圍為,且當(dāng)r=45, θ=時,水池的最大面積為337.5平方米.
B組 能力提高
5.(2018·南通模擬)如圖,某機械廠欲從AB=2米,AD=2米的矩形鐵皮中裁剪出一個四邊形ABEF加工成某儀器的零件,裁剪要求如下:點E,F(xiàn)分別在邊BC,AD上,且EB=EF,A 24、F 25、-=-
=2-=3tan+≥2=2,
當(dāng)且僅當(dāng)3tan=時,不等式取等號,
又θ∈,∈,
故tan=,=,θ=.
BE==,AF=-=.
答 當(dāng)BE,AF的長度分別為米,米時,裁剪出的四邊形ABEF的面積最小,最小值為2平方米.
6.(2018·蘇錫常鎮(zhèn)調(diào)研)圖(Ⅰ)是一斜拉橋的航拍圖,為了分析大橋的承重情況,研究小組將其抽象成圖(Ⅱ)所示的數(shù)學(xué)模型.索塔AB,CD與橋面AC均垂直,通過測量知兩索塔的高度均為60 m,橋面AC上一點P到索塔AB,CD距離之比為21∶4,且P對兩塔頂?shù)囊暯菫?35°.
(1)求兩索塔之間橋面AC的長度;
(2)研究表明索塔對橋面上某處的“ 26、承重強度”與多種因素有關(guān),可簡單抽象為:某索塔對橋面上某處的“承重強度”與索塔的高度成正比(比例系數(shù)為正數(shù)a),且與該處到索塔的距離的平方成反比(比例系數(shù)為正數(shù)b).問兩索塔對橋面何處的“承重強度”之和最?。坎⑶蟪鲎钚≈担?
解 (1)設(shè)AP=21t,PC=4t(t>0),記∠APB=α,∠CPD=β,
則tan α==,tan β==,
由tan(α+β)=tan 45°===1,
化簡得 7t2-125t-300=0,解得t=20或t=-(舍去),
所以AC=AP+PC=25×20=500.
答 兩索塔之間的距離AC為500米.
(2)設(shè)AP=x,點P處的承重強度之和為L(x 27、).
則L(x)=60,且x∈(0,500),
即L(x)=60ab,x∈(0,500),
記l(x)=+,x∈(0,500),
則l′(x)=+,
令l′(x)=0,解得x=250,
當(dāng)x∈(0,250),l′(x)<0時,l(x)單調(diào)遞減;
當(dāng)x∈(250,500),l′(x)>0時,l(x)單調(diào)遞增.
所以當(dāng)x=250時,l(x)取到最小值,L(x)也取到最小值.
答 兩索塔對橋面AC中點處的“承重強度”之和最小,且最小值為.
7.(2018·江蘇姜堰、溧陽、前黃中學(xué)聯(lián)考)科學(xué)研究證實,二氧化碳等溫室氣體的排放(簡稱碳排放)對全球氣候和生態(tài)環(huán)境產(chǎn)生了負(fù)面影響,環(huán) 28、境部門對A市每年的碳排放總量規(guī)定不能超過550萬噸,否則將采取緊急限排措施.已知A市2017年的碳排放總量為400萬噸,通過技術(shù)改造和倡導(dǎo)低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少10%.同時,因經(jīng)濟發(fā)展和人口增加等因素,每年又新增加碳排放量m萬噸.
(1)求A市2019年的碳排放總量(用含m的式子表示);
(2)若A市永遠不需要采取緊急限排措施,求m的取值范圍.
解 設(shè)2018年的碳排放總量為a1,2019年的碳排放總量為a2,…,
(1)由已知得, a1=400×0.9+m,
a2=0.9×+m=400×0.92+0.9m+m=324+1.9m.
(2)a3=0.9×+m =400×0.93+0.92m+0.9m+m,
…
an=400×0.9n+0.9n-1m+0.9n-2m+…+0.9m+m
=400×0.9n+m=400×0.9n+10m
=×0.9n+10m.
由已知有?n∈N*,an≤550.
①當(dāng)400-10m=0,即m=40時,顯然滿足題意;
②當(dāng)400-10m>0,即m<40時,
由指數(shù)函數(shù)的性質(zhì)可得×0.9+10m≤550,解得m≤190.
綜合得m<40;
③當(dāng)400-10m<0,即m>40時,
由指數(shù)函數(shù)的性質(zhì)可得10m≤550,解得m≤55,
綜合得40
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案