(浙江專用)2022高考數(shù)學二輪復習 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)學案

上傳人:xt****7 文檔編號:106951849 上傳時間:2022-06-14 格式:DOC 頁數(shù):21 大?。?09KB
收藏 版權(quán)申訴 舉報 下載
(浙江專用)2022高考數(shù)學二輪復習 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)學案_第1頁
第1頁 / 共21頁
(浙江專用)2022高考數(shù)學二輪復習 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)學案_第2頁
第2頁 / 共21頁
(浙江專用)2022高考數(shù)學二輪復習 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)學案_第3頁
第3頁 / 共21頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專用)2022高考數(shù)學二輪復習 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)學案》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用)2022高考數(shù)學二輪復習 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)學案(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、(浙江專用)2022高考數(shù)學二輪復習 專題一 三角函數(shù)、解三角形與平面向量 第1講 三角函數(shù)的圖象與性質(zhì)學案 [考情考向分析] 1.以圖象為載體,考查三角函數(shù)的最值、單調(diào)性、對稱性、周期性.2.考查三角函數(shù)式的化簡、三角函數(shù)的圖象和性質(zhì)、角的求值,重點考查分析、處理問題的能力,是高考的必考點. 熱點一 三角函數(shù)的概念、誘導公式及同角關(guān)系式 1.三角函數(shù):設(shè)α是一個任意角,它的終邊與單位圓交于點P(x,y),則sin α=y(tǒng),cos α=x,tan α=(x≠0).各象限角的三角函數(shù)值的符號:一全正,二正弦,三正切,四余弦. 2.同角基本關(guān)系式:sin2α+cos2α=1,=tan

2、α. 3.誘導公式:在+α,k∈Z的誘導公式中“奇變偶不變,符號看象限”. 例1 (1)已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(2,1),則tan等于(  ) A.-7 B.- C. D.7 答案 A 解析 由角α的頂點與原點O重合,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(2,1),可得x=2,y=1,tan α==,∴tan 2α===, ∴tan===-7. (2)已知曲線f(x)=x3-2x2-x在點(1,f(1))處的切線的傾斜角為α,則cos2-2cos2α-3sin(2π-α)·cos(π+α)的值為(  ) A. B.- C.

3、 D.- 答案 A 解析 由f(x)=x3-2x2-x可知f′(x)=3x2-4x-1, ∴tan α=f′(1)=-2, cos2-2cos2α-3sincos =(-sin α)2-2cos2α-3sin αcos α =sin2α-2cos2α-3sin αcos α = = ==. 思維升華 (1)涉及與圓及角有關(guān)的函數(shù)建模問題(如鐘表、摩天輪、水車等),常常借助三角函數(shù)的定義求解.應(yīng)用定義時,注意三角函數(shù)值僅與終邊位置有關(guān),與終邊上點的位置無關(guān). (2)應(yīng)用誘導公式時要弄清三角函數(shù)在各個象限內(nèi)的符號;利用同角三角函數(shù)的關(guān)系化簡過程要遵循一定的原則,如切化弦、化

4、異為同、化高為低、化繁為簡等. 跟蹤演練1 (1)在平面直角坐標系中,若角α的終邊經(jīng)過點P,則sin(π+α)等于(  ) A.- B.- C. D. 答案 B 解析 由誘導公式可得, sin=sin=-sin=-, cos=cos=cos=, 即P, 由三角函數(shù)的定義可得,sin α==, 則sin=-sin α=-. (2)已知sin(3π+α)=2sin,則等于(  ) A. B. C. D.- 答案 D 解析 ∵sin(3π+α)=2sin, ∴-sin α=-2cos α,即sin α=2cos α, 則= ===-. 熱點二 三角函數(shù)的

5、圖象及應(yīng)用 函數(shù)y=Asin(ωx+φ)的圖象 (1)“五點法”作圖: 設(shè)z=ωx+φ,令z=0,,π,,2π,求出x的值與相應(yīng)的y的值,描點、連線可得. (2)圖象變換: (先平移后伸縮)y=sin xy=sin(x+φ) y=sin(ωx+φ) y=Asin(ωx+φ). (先伸縮后平移)y=sin x y=sin ωxy=sin(ωx+φ) y=Asin(ωx+φ). 例2 (1)已知函數(shù)f(x)=sin(ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cos ωx的圖象,只要將y=f(x)的圖象(  ) A.向左平移個單位長度 B.向右平移個單位長度 C.

6、向左平移個單位長度 D.向右平移個單位長度 答案 A 解析 由題意知,函數(shù)f(x)的最小正周期T=π, 所以ω=2,即f(x)=sin,g(x)=cos 2x. 把g(x)=cos 2x變形得g(x)=sin=sin,所以只要將f(x)的圖象向左平移個單位長度,即可得到g(x)=cos 2x的圖象,故選A. (2)函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移個單位長度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間上的值域為[-1,2],則θ=________. 答案  解析 函數(shù)f(x)=Asin(ωx+φ)的部分圖象如題圖所示, 則

7、A=2,=-=,解得T=π, 所以ω=2,即f(x)=2sin(2x+φ), 當x=π,f?=2sin=2, ∴+φ=+2kπ,k∈Z,∴φ=-π+2kπ,k∈Z, 又|φ|<π,解得φ=-, 所以f(x)=2sin, 因為函數(shù)f(x)的圖象向右平移個單位長度后得到函數(shù)g(x)的圖象, 所以g(x)=2sin=2cos 2x, 若函數(shù)g(x)在區(qū)間上的值域為[-1,2], 則2cos 2θ=-1,則θ=kπ+,k∈Z或θ=kπ+,k∈Z, 所以θ=. 思維升華 (1)已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的圖象求解析式時,常采用待定系數(shù)法,由圖中的最高點、最低

8、點或特殊點求A;由函數(shù)的周期確定ω;確定φ常根據(jù)“五點法”中的五個點求解,其中一般把第一個零點作為突破口,可以從圖象的升降找準第一個零點的位置. (2)在圖象變換過程中務(wù)必分清是先相位變換,還是先周期變換.變換只是相對于其中的自變量x而言的,如果x的系數(shù)不是1,就要把這個系數(shù)提取后再確定變換的單位長度數(shù)和方向. 跟蹤演練2 (1)若將函數(shù)y=cos ωx(ω>0)的圖象向右平移個單位長度后與函數(shù)y=sin ωx的圖象重合,則ω的最小值為(  ) A. B. C. D. 答案 B 解析 將函數(shù)y=cos ωx(ω>0)的圖象向右平移個單位長度后得到函數(shù)的解析式為y=cos ω =

9、cos. ∵平移后得到的函數(shù)圖象與函數(shù)y=sin ωx的圖象重合, ∴-=2kπ-(k∈Z),即ω=-6k+(k∈Z). ∴當k=0時,ω=. (2)函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,則ω=________;函數(shù)f(x)在區(qū)間上的零點為________. 答案 2  解析 從圖中可以發(fā)現(xiàn),相鄰的兩個最高點和最低點的橫坐標分別為,-,從而求得函數(shù)的最小正周期為T=2=π,根據(jù)T=可求得ω=2.再結(jié)合題中的條件可以求得函數(shù)的解析式為f(x)=2sin,令2x-=kπ(k∈Z),解得x=+(k∈Z),結(jié)合所給的區(qū)間,整理得出x=. 熱點三 三角函數(shù)的性質(zhì) 1.

10、三角函數(shù)的單調(diào)區(qū)間 y=sin x的單調(diào)遞增區(qū)間是(k∈Z),單調(diào)遞減區(qū)間是(k∈Z); y=cos x的單調(diào)遞增區(qū)間是[2kπ-π,2kπ](k∈Z),單調(diào)遞減區(qū)間是[2kπ,2kπ+π](k∈Z); y=tan x的單調(diào)遞增區(qū)間是(k∈Z). 2.y=Asin(ωx+φ),當φ=kπ(k∈Z)時為奇函數(shù); 當φ=kπ+(k∈Z)時為偶函數(shù); 對稱軸方程可由ωx+φ=kπ+(k∈Z)求得. y=Acos(ωx+φ),當φ=kπ+(k∈Z)時為奇函數(shù); 當φ=kπ(k∈Z)時為偶函數(shù); 對稱軸方程可由ωx+φ=kπ(k∈Z)求得. y=Atan(ωx+φ),當φ=kπ(k∈

11、Z)時為奇函數(shù). 例3 (2017·浙江)已知函數(shù)f(x)=sin2x-cos2x-2sin xcos x(x∈R). (1)求f?的值; (2)求f(x)的最小正周期及單調(diào)遞增區(qū)間. 解 (1)由sin=,cos=-,得 f?=2-2-2××=2. (2)由cos 2x=cos2x-sin2x與sin 2x=2sin xcos x得, f(x)=-cos 2x-sin 2x=-2sin. 所以f(x)的最小正周期是π. 由正弦函數(shù)的性質(zhì)得, +2kπ≤2x+≤+2kπ,k∈Z, 解得+kπ≤x≤+kπ,k∈Z. 所以f(x)的單調(diào)遞增區(qū)間為(k∈Z). 思維升華 函

12、數(shù)y=Asin(ωx+φ)的性質(zhì)及應(yīng)用類題目的求解思路 第一步:先借助三角恒等變換及相應(yīng)三角函數(shù)公式把待求函數(shù)化成y=Asin(ωx+φ)+B的形式; 第二步:把“ωx+φ”視為一個整體,借助復合函數(shù)性質(zhì)求y=Asin(ωx+φ)+B的單調(diào)性及奇偶性、最值、對稱性等問題. 跟蹤演練3 (2018·寧波模擬)已知函數(shù)f(x)=2sin xcos x+1-2sin2 x. (1)求f(x)的最小正周期; (2)求f(x)在區(qū)間上的最大值與最小值. 解 (1)因為f(x)=sin 2x+cos 2x=sin, 所以f(x)的最小正周期為π. (2)因為-≤x≤, 所以-≤2x+≤.

13、 當2x+=,即x=時,f(x)取得最大值; 當2x+=-,即x=-時, f?=sin+cos=-, 即f(x)的最小值為-. 真題體驗 1.(2018·全國Ⅰ)已知函數(shù)f(x)=2sin x+sin 2x,則f(x)的最小值是________. 答案?。? 解析 f′(x)=2cos x+2cos 2x=2cos x+2(2cos2x-1) =2(2cos2x+cos x-1)=2(2cos x-1)(cos x+1). ∵cos x+1≥0, ∴當-1≤cos x<時,f′(x)<0,f(x)單調(diào)遞減; 當0,f(x)單調(diào)遞增,

14、∴當cos x=時,f(x)有最小值. 又f(x)=2sin x+sin 2x=2sin x(1+cos x), ∴當sin x=-時,f(x)有最小值, 即f(x)min=2××=-. 2.(2018·全國Ⅱ改編 )若f(x)=cos x-sin x在[-a,a]上是減函數(shù),則a的最大值是________. 答案  解析 f(x)=cos x-sin x =- =-sin, 當x∈,即x-∈時, y=sin單調(diào)遞增, f(x)=-sin單調(diào)遞減. ∵函數(shù)f(x)在[-a,a]上是減函數(shù), ∴[-a,a]?, ∴0

15、)將函數(shù)y=sin的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)________.(填序號) ①在區(qū)間上單調(diào)遞增; ②在區(qū)間上單調(diào)遞減; ③在區(qū)間上單調(diào)遞增; ④在區(qū)間上單調(diào)遞減. 答案?、? 解析 函數(shù)y=sin的圖象向右平移個單位長度后的解析式為y=sin=sin 2x,則函數(shù)y=sin 2x的一個單調(diào)遞增區(qū)間為,一個單調(diào)遞減區(qū)間為.由此可判斷①正確. 4.(2018·全國Ⅲ)函數(shù)f(x)=cos在[0,π]上的零點個數(shù)為______. 答案 3 解析 由題意可知,當3x+=kπ+(k∈Z)時, f(x)=cos=0. ∵x∈[0,π], ∴3x+∈, ∴當3x+的取

16、值為,,時,f(x)=0, 即函數(shù)f(x)=cos在[0,π]上的零點個數(shù)為3. 押題預測 1.已知函數(shù)f(x)=sin(x∈R,ω>0)圖象的相鄰兩條對稱軸之間的距離為.為了得到函數(shù)g(x)=cos ωx的圖象,只要將y=f(x)的圖象(  ) A.向左平移個單位長度 B.向右平移個單位長度 C.向左平移個單位長度 D.向右平移個單位長度 押題依據(jù) 本題結(jié)合函數(shù)圖象的性質(zhì)確定函數(shù)解析式,然后考查圖象的平移,很有代表性,考生應(yīng)熟練掌握圖象平移規(guī)則,防止出錯. 答案 A 解析 由于函數(shù)f(x)圖象的相鄰兩條對稱軸之間的距離為,則其最小正周期T=π, 所以ω==2,即f(x)

17、=sin,g(x)=cos 2x. 把g(x)=cos 2x變形得g(x)=sin=sin,所以要得到函數(shù)g(x)的圖象,只要將f(x)的圖象向左平移個單位長度即可.故選A. 2.如圖,函數(shù)f(x)=Asin(ωx+φ) 與坐標軸的三個交點P,Q,R滿足P(2,0),∠PQR=,M為QR的中點,PM=2,則A的值為(  ) A. B. C.8 D.16 押題依據(jù) 由三角函數(shù)的圖象求解析式是高考的熱點,本題結(jié)合平面幾何知識求A,考查數(shù)形結(jié)合思想. 答案 B 解析 由題意設(shè)Q(a,0),R(0,-a)(a>0). 則M,由兩點間距離公式,得 PM==2, 解得a1=8,

18、a2=-4(舍去), 由此得=8-2=6,即T=12,故ω=, 由P(2,0)得φ=-, 代入f(x)=Asin(ωx+φ), 得f(x)=Asin, 從而f(0)=Asin=-8, 得A=. 3.已知函數(shù)f(x)=cos4x-2sin xcos x-sin4x. (1)若x是某三角形的一個內(nèi)角,且f(x)=-,求角x的大小; (2)當x∈時,求f(x)的最小值及取得最小值時x的值. 押題依據(jù) 三角函數(shù)解答題的第(1)問的常見形式是求周期、求單調(diào)區(qū)間及求對稱軸方程(或?qū)ΨQ中心)等,這些都可以由三角函數(shù)解析式直接得到,因此此類命題的基本方式是利用三角恒等變換得到函數(shù)的解析式.

19、第(2)問的常見形式是求解函數(shù)的值域(或最值),特別是指定區(qū)間上的值域(或最值),是高考考查三角函數(shù)圖象與性質(zhì)命題的基本模式. 解 (1)∵f(x)=cos4x-2sin xcos x-sin4x =(cos2x+sin2x)(cos2x-sin2x)-sin 2x =cos 2x-sin 2x = =cos, ∴f(x)=cos=-, 可得cos=-. 由題意可得x∈(0,π), ∴2x+∈, 可得2x+=或, ∴x=或. (2)∵x∈,∴2x+∈, ∴cos∈, ∴f(x)=cos∈[-,1]. ∴f(x)的最小值為-,此時2x+=π, 即x=. A組

20、 專題通關(guān) 1.函數(shù)y=sin x(cos x-sin x),x∈R的值域是(  ) A. B. C. D. 答案 D 解析 y=sin xcos x-sin2x=sin 2x- =-+sin∈, 故選D. 2.(2018·浙江金華十校聯(lián)考)已知函數(shù)f(x)=sin(x∈R,ω>0)與g(x)=cos(2x+φ)的對稱軸完全相同.為了得到h(x)=cos的圖象,只需將y=f(x)的圖象(  ) A.向左平移個單位長度 B.向右平移個單位長度 C.向左平移個單位長度 D.向右平移個單位長度 答案 A 解析 由ωx+=+k1π,k1∈Z得函數(shù)f(x)的對稱軸為x

21、=+,k1∈Z,由2x+φ=k2π,k2∈Z得函數(shù)g(x)的對稱軸為x=-+,k2∈Z.因為兩函數(shù)的對稱軸完全相同,所以解得則f(x)=sin,h(x)=cos,將函數(shù)f(x)=sin的圖象向左平移個單位長度后得到的函數(shù)解析式為y=sin=sin=cos,故選A. 3.(2018·浙江省金麗衢十二校聯(lián)考)函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,則φ等于(  ) A.- B.- C. D. 答案 B 解析 由題圖易得函數(shù)f(x)的最小正周期為=2,解得ω=2,則f(x)=Asin(2x+φ),又因為當x=時,f(x)取得最大值,所以2×+φ=+2kπ,k∈Z,解得

22、φ=-+2kπ,k∈Z,又因為|φ|<,所以φ=-,故選B. 4.(2018·浙江教育綠色評價聯(lián)盟適應(yīng)性考試)設(shè)函數(shù)f(x)=sin2x+acos x+b在上的最大值是M,最小值是m,則M-m(  ) A.與a有關(guān),且與b有關(guān) B.與a有關(guān),且與b無關(guān) C.與a無關(guān),且與b無關(guān) D.與a無關(guān),且與b有關(guān) 答案 B 解析 令t=cos x,則g(t)=-t2+at+b+1(0≤t≤1),由題意得,①當<0,即a<0時,g(0)為最大值,g(1)為最小值,此時M-m=1-a;②當>1,即a>2時,g(0)為最小值,g(1)為最大值,此時M-m=a-1; ③當≤≤1,即1≤a≤2時,M

23、取g,m取g(0),此時M-m=;④當0≤<,即0≤a<1時,M取g,m取g(1),此時M-m=+1-a.綜上所述,M-m與a有關(guān),但與b無關(guān),故選B. 5.函數(shù)f(x)=sin ωx+cos ωx(ω>0)圖象的相鄰對稱軸之間的距離為,則下列結(jié)論正確的是(  ) A.f(x)的最大值為1 B.f(x)的圖象關(guān)于直線x=對稱 C.f?的一個零點為x=- D.f(x)在區(qū)間上單調(diào)遞減 答案 D 解析 因為f(x)=sin ωx+cos ωx=2sin的相鄰的對稱軸之間的距離為, 所以=π,得ω=2,即f(x)=2sin, 所以f(x)的最大值為2,所以A錯誤; 當x=時,2x

24、+=π,所以f?=0, 所以x=不是函數(shù)圖象的對稱軸,所以B錯誤; 由f?=2sin =-2sin, 當x=-時,f?=2≠0, 所以x=-不是函數(shù)的一個零點,所以C錯誤; 當x∈時,2x+∈,f(x)單調(diào)遞減,所以D正確. 6.(2018·浙江省金華十校模擬)在平面直角坐標系中,角α的頂點與坐標原點重合,始邊與x軸的非負半軸重合,終邊過點P(-,-1),則tan α=________,cos α+sin=________. 答案  0 解析 ∵角α的頂點與坐標原點重合,始邊與x軸的非負半軸重合,終邊過點P(-,-1), ∴x=-,y=-1, ∴tan α==, cos

25、 α+sin=cos α-cos α=0. 7.已知tan α=2,則=________. 答案  解析 ∵tan 2α==-, ∴= ===. 8.(2017·全國Ⅱ)函數(shù)f(x)=sin2x+cos x-的最大值是________. 答案 1 解析 f(x)=1-cos2x+cos x- =-2+1. ∵x∈,∴cos x∈[0,1], ∴當cos x=時,f(x)取得最大值,最大值為1. 9.設(shè)函數(shù)f(x)(x∈R)滿足f(x-π)=f(x)-sin x,當-π

26、 x, ∴f(x)=f(x-π)+sin x, 則f(x+π)=f(x)+sin(x+π)=f(x)-sin x. ∴f(x+π)=f(x-π),即f(x+2π)=f(x). ∴函數(shù)f(x)的周期為2π, ∴f?=f?=f? =f?+sin. ∵當-π

27、實數(shù)b的取值范圍. 解 m=(sin ωx,1),n=(cos ωx,cos2ωx+1), f(x)=m·n+b=sin ωxcos ωx+cos2ωx+1+b =sin 2ωx+cos 2ωx++b =sin++b. (1)∵函數(shù)f(x)的圖象關(guān)于直線x=對稱, ∴2ω·+=kπ+(k∈Z), 解得ω=3k+1(k∈Z), ∵ω∈[0,3],∴ω=1, ∴f(x)=sin++b, 由2kπ-≤2x+≤2kπ+(k∈Z), 解得kπ-≤x≤kπ+(k∈Z), ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(k∈Z). (2)由(1)知f(x)=sin++b, ∵x∈,∴2x+∈,

28、 ∴當2x+∈,即x∈時,函數(shù)f(x)單調(diào)遞增; 當2x+∈,即x∈時,函數(shù)f(x)單調(diào)遞減. 又f(0)=f?, ∴當f?>0≥f?或f?=0時,函數(shù)f(x)有且只有一個零點, 即sin≤-b-

29、 θ=,cos θ=, ∵∠AOC=α,BC=1,∴θ+α=, 則α=-θ, 則cos2-sin cos -=cos α-sin α =cos=cos=sin θ=. 12.已知函數(shù)f(x)=2sin(ωx+φ)+1,其圖象與直線y=3相鄰兩個交點的距離為π,若f(x)>2對任意x∈恒成立,則φ的取值范圍是(  ) A. B. C. D. 答案 D 解析 因為函數(shù)f(x)=2sin(ωx+φ)+1,其圖象與直線y=3相鄰兩個交點的距離為π,所以函數(shù)的周期為T=π,ω=2, 當x∈時,2x+φ∈, 且|φ|≤, 由f(x)>2知,sin(2x+φ)>, 所以解得

30、≤φ≤. 13.已知2sin αtan α=3,且0<α<π. (1)求α的值; (2)求函數(shù)f(x)=4cos xcos(x-α)在的值域. 解 (1)由已知得2sin2α=3cos α, 則2cos2α+3cos α-2=0, 所以cos α=或cos α=-2(舍), 又因為0<α<π,所以α=. (2)由(1)得f(x)=4cos xcos =4cos x =2cos2x+2sin xcos x =1+cos 2x+sin 2x =1+2sin, 由0≤x≤,得≤2x+≤, 所以當x=0時,f(x)取得最小值f(0)=2, 當x=時,f(x)取得最大值f=

31、3, 所以函數(shù)f(x)在上的值域為[2,3]. 14.已知a>0,函數(shù)f(x)=-2asin+2a+b,當x∈時,-5≤f(x)≤1. (1)求常數(shù)a,b的值; (2)設(shè)g(x)=f?且lg g(x)>0,求g(x)的單調(diào)區(qū)間. 解 (1)∵x∈, ∴2x+∈. ∴sin∈, ∴-2asin∈[-2a,a]. ∴f(x)∈[b,3a+b], 又∵-5≤f(x)≤1, ∴b=-5,3a+b=1, 因此a=2,b=-5. (2)由(1)得f(x)=-4sin-1, ∴g(x)=f?=-4sin-1 =4sin-1. 又由lg g(x)>0,得g(x)>1, ∴4sin-1>1, ∴sin>, ∴2kπ+<2x+<2kπ+,k∈Z, 其中當2kπ+<2x+≤2kπ+,k∈Z, 即kπ

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!