(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十一 直線與圓講義 理(重點(diǎn)生含解析)
《(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十一 直線與圓講義 理(重點(diǎn)生含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十一 直線與圓講義 理(重點(diǎn)生含解析)(20頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十一 直線與圓講義 理(重點(diǎn)生,含解析)卷卷卷2018_直線方程、圓的方程、點(diǎn)到直線的距離T62017圓的性質(zhì)、點(diǎn)到直線的距離、雙曲線的幾何性質(zhì)T15圓的弦長問題、雙曲線的幾何性質(zhì)T9平面向量基本定理、直線與圓位置關(guān)系T12直線與圓的方程、直線與拋物線位置關(guān)系T202016拋物線、圓的標(biāo)準(zhǔn)方程T10圓的方程、點(diǎn)到直線的距離T4點(diǎn)到直線的距離、弦長問題T16縱向把握趨勢卷3年2考,涉及圓的性質(zhì)、點(diǎn)到直線的距離、雙曲線、拋物線的幾何性質(zhì)預(yù)計(jì)2019年會(huì)以選擇題的形式考查圓方程的求法及應(yīng)用卷3年2考,涉及圓的方程、點(diǎn)到直線的距離、雙曲線的幾何性質(zhì),
2、題型為選擇題,難度適中預(yù)計(jì)2019年會(huì)以選擇題的形式考查直線與圓的綜合問題卷3年4考,涉及直線方程、圓的方程、點(diǎn)到直線的距離、弦長問題、直線與拋物線的位置關(guān)系、橢圓的幾何性質(zhì)等,既有選擇、填空題,也有解答題,難度適中預(yù)計(jì)2019年會(huì)以選擇題或填空題的形式考查直線與圓的位置關(guān)系,同時(shí)要注意圓與橢圓、雙曲線、拋物線的綜合問題橫向把握重點(diǎn)1.圓的方程近幾年成為高考全國卷命題的熱點(diǎn),需重點(diǎn)關(guān)注此類試題難度中等偏下,多以選擇題或填空題形式考查2.直線與圓的方程偶爾單獨(dú)命題,單獨(dú)命題時(shí)有一定的深度,有時(shí)也會(huì)出現(xiàn)在壓軸題的位置,難度較大,對(duì)直線與圓的方程(特別是直線)的考查主要體現(xiàn)在圓錐曲線的綜合問題上.直
3、線的方程2已知直線xy10與直線2xmy30平行,則它們之間的距離是()A1 B.C3 D4解析:選B由題意可知,解得m2,所以兩平行線之間的距離d.3已知點(diǎn)M是直線xy2上的一個(gè)動(dòng)點(diǎn),且點(diǎn)P(,1),則|PM|的最小值為()A. B1C2 D3解析:選B|PM|的最小值即點(diǎn)P(,1)到直線xy2的距離,又1.故|PM|的最小值為1.4設(shè)A,B是x軸上的兩點(diǎn),點(diǎn)M的橫坐標(biāo)為3,且|MA|MB|,若直線MA的方程為xy10,則直線MB的方程是()Axy70 Bxy70Cx2y10 Dx2y10解析:選A法一:由|MA|MB|知,點(diǎn)M在A,B的垂直平分線上由點(diǎn)M的橫坐標(biāo)為3,且直線MA的方程為xy
4、10,得M(3,4)由題意知,直線MA,MB關(guān)于直線x3對(duì)稱,故直線MA上的點(diǎn)(0,1)關(guān)于直線x3的對(duì)稱點(diǎn)(6,1)在直線MB上,直線MB的方程為xy70.法二:由點(diǎn)M的橫坐標(biāo)為3,且直線MA的方程為xy10,得M(3,4),代入四個(gè)選項(xiàng)可知只有A項(xiàng)滿足題意,選A.5.如圖所示,射線OA,OB與x軸正半軸的夾角分別為45和30,過點(diǎn)P(1,0)作直線分別交OA,OB于A,B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線x2y0上時(shí),直線AB的方程為_解析:由題意可得kOAtan 451,kOBtan 150,所以直線lOA:yx,lOB:yx,設(shè)A(m,m),B(n,n)(m0,n0),則AB的中點(diǎn)C,當(dāng)
5、m1時(shí),n,A(1,1),B,C,故點(diǎn)C不在直線x2y0上,不滿足題意,當(dāng)m1時(shí),n,由點(diǎn)C在直線x2y0上,且A,P,B三點(diǎn)共線得解得m,所以A(,),又P(1,0),所以kABkAP,所以lAB:y(x1),即直線AB的方程為(3)x2y30.答案:(3)x2y30 系統(tǒng)方法解決直線方程問題的2個(gè)注意點(diǎn)(1)求解兩條直線平行的問題時(shí),在利用A1B2A2B10建立方程求出參數(shù)的值后,要注意代入檢驗(yàn),排除兩條直線重合的可能性(2)要注意幾種直線方程的局限性點(diǎn)斜式、兩點(diǎn)式、斜截式要求直線不能與x軸垂直而截距式方程不能表示過原點(diǎn)的直線,也不能表示垂直于坐標(biāo)軸的直線.圓的方程題組全練1圓心在直線2x
6、y70上的圓C與y軸交于A(0,4),B(0,2)兩點(diǎn),則圓C的標(biāo)準(zhǔn)方程為()A(x2)2(y3)25B(x2)2(y3)25C(x2)2(y3)25D(x2)2(y3)25解析:選D法一:設(shè)圓的標(biāo)準(zhǔn)方程為(xa)2(yb)2r2,故解得半徑r,故圓C的標(biāo)準(zhǔn)方程為(x2)2(y3)25.法二:利用圓心在直線2xy70上來檢驗(yàn),只有D符合,即(x2)2(y3)25的圓心為(2,3),22370,其他三個(gè)圓心(2,3),(2,3),(2,3)均不符合題意,故選D.2已知圓x2y22x4y10關(guān)于直線2axby20對(duì)稱,則ab的取值范圍是()A. B.C. D.解析:選A將圓的方程配方得(x1)2(
7、y2)24,若圓關(guān)于已知直線對(duì)稱,即圓心(1,2)在直線2axby20上,代入整理得ab1,故aba(1a)2.3(2019屆高三豫南十校聯(lián)考)已知圓C的圓心在x軸的正半軸上,點(diǎn)M(0,)在圓C上,且圓心到直線2xy0的距離為,則圓C的方程為_解析:設(shè)C(a,0)(a0),由題意知,解得a2,所以r3,故圓C的方程為(x2)2y29.答案:(x2)2y294在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,0)為圓心且與直線mxy2m10(mR)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為_解析:由題意得,半徑等于 ,當(dāng)且僅當(dāng)m1時(shí)取等號(hào),所以半徑最大為,所求圓為(x1)2y22.答案:(x1)2y22系統(tǒng)方法
8、求圓的方程的2種方法(1)直接法:根據(jù)圓的幾何性質(zhì),直接求出圓心坐標(biāo)和半徑,進(jìn)而寫出方程(2)待定系數(shù)法:若已知條件與圓心(a,b)和半徑r有關(guān),則設(shè)圓的標(biāo)準(zhǔn)方程,依據(jù)已知條件列出關(guān)于a,b,r的方程組,從而求出a,b,r的值;若已知條件沒有明確給出圓心或半徑,則選擇設(shè)圓的一般方程,依據(jù)已知條件列出關(guān)于D,E,F(xiàn)的方程組,進(jìn)而求出D,E,F(xiàn)的值直線(圓)與圓的位置關(guān)系多維例析角度一直線(圓)與圓位置關(guān)系的判定及應(yīng)用在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y2x4,設(shè)圓C的半徑為1,圓心在l上(1)若圓心C也在直線yx1上,過點(diǎn)A作圓C的切線,求切線的方程(2)若圓C上存在點(diǎn)M,使|M
9、A|2|MO|,求圓心C的橫坐標(biāo)a的取值范圍解(1)因?yàn)閳A心在直線l:y2x4上,也在直線yx1上,所以解方程組得圓心C(3,2),又因?yàn)閳A的半徑為1,所以圓的方程為(x3)2(y2)21.又因?yàn)辄c(diǎn)A(0,3),顯然過點(diǎn)A,圓C的切線的斜率存在,設(shè)所求的切線方程為ykx3,即kxy30,所以1,解得k0或k,所以所求切線方程為y3或yx3,即y30或3x4y120.(2)因?yàn)閳AC的圓心在直線l:y2x4上,所以設(shè)圓心C(a,2a4),又因?yàn)閳AC的半徑為1,則圓C的方程為(xa)2(y2a4)21,設(shè)M(x,y),又因?yàn)閨MA|2|MO|,則有2,整理得x2(y1)24,設(shè)為圓D,圓心D(0,1
10、)所以點(diǎn)M既在圓C上,又在圓D上,即圓C與圓D有交點(diǎn),所以21 21,解得0a.故圓心C的橫坐標(biāo)a的取值范圍是.角度二已知直線(圓)與圓的位置關(guān)系求參數(shù)值(范圍)(1)設(shè)直線xya0與圓x2y24相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若AOB為等邊三角形,則實(shí)數(shù)a的值為()A BC3 D9(2)已知點(diǎn)M(2,0),N(2,0),若圓x2y26x9r20(r0)上存在點(diǎn)P(不同于點(diǎn)M,N),使得PMPN,則實(shí)數(shù)r的取值范圍是()A(1,5) B1,5C(1,3 D1,3解析(1)由題意知,圓心坐標(biāo)為(0,0),半徑為2,則AOB的邊長為2,所以AOB的高為,即圓心到直線xya0的距離為,所以,解得a.
11、(2)將圓的方程化為標(biāo)準(zhǔn)方程得(x3)2y2r2(r0),若要使圓上一點(diǎn)P滿足PMPN,則需圓經(jīng)過M,N兩點(diǎn)之間,即r1,5當(dāng)r1時(shí),(x3)2y21經(jīng)過點(diǎn)N(2,0),圓(x3)2y2r2(r0)上不存在點(diǎn)P,使得PMPN;當(dāng)r5時(shí),(x3)2y225經(jīng)過點(diǎn)M(2,0),同理圓(x3)2y2r2(r0)上不存在點(diǎn)P,使得PMPN.故選A.答案(1)B(2)A系統(tǒng)方法1直線(圓)與圓位置關(guān)系問題的求解思路(1)研究直線與圓的位置關(guān)系主要通過圓心到直線的距離和半徑的比較實(shí)現(xiàn),兩圓的位置關(guān)系的判斷依據(jù)是兩圓心距離與兩半徑差與和的比較(2)求過圓外一定點(diǎn)的切線方程的基本思路:首先將直線方程設(shè)為點(diǎn)斜式
12、,然后利用圓心到直線的距離等于半徑求斜率,最后若求得的斜率只有一個(gè),則存在一條過切點(diǎn)與x軸垂直的切線2弦長的求解方法幾何法根據(jù)半徑,弦心距,弦長構(gòu)成的直角三角形,構(gòu)成三者間的關(guān)系r2d2(其中l(wèi)為弦長,r為圓的半徑,d為圓心到直線的距離)公式法根據(jù)公式:l|x1x2|求解(其中l(wèi)為弦長,x1,x2為直線與圓相交所得交點(diǎn)的橫坐標(biāo),k為直線的斜率)距離法求出交點(diǎn)坐標(biāo),用兩點(diǎn)間距離公式求解綜合訓(xùn)練1在圓(x1)2(y1)29上總有四個(gè)點(diǎn)到直線l:3x4yt0的距離為1,則實(shí)數(shù)t的取值范圍是()A(17,1) B(15,3)C(17,3) D(15,1)解析:選C由圓上總有四個(gè)點(diǎn)到直線l:3x4yt0
13、的距離為1,得圓心(1,1)到直線l的距離dr12,解得17t3,即實(shí)數(shù)t的取值范圍是(17,3)2已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:x2y24x6y120交于M,N兩點(diǎn)若12,其中O為坐標(biāo)原點(diǎn),則|MN|()A2 B4C. D2解析:選A設(shè)M(x1,y1),N(x2,y2),圓C的方程可化為(x2)2(y3)21,其圓心為(2,3),將ykx1代入方程x2y24x6y120,整理得(1k2)x24(k1)x70,所以16(k22k1)28(1k2)12k232k120,x1x2,x1x2.x1x2y1y2(1k2)x1x2k(x1x2)18,由題設(shè)可得812,得k1,滿足0,所以
14、直線l的方程為yx1.故圓心(2,3)恰在直線l上,所以|MN|2.3在平面直角坐標(biāo)系xOy中,已知圓C1:(x3)2(y1)24.若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2,則直線l的方程為_解析:由于直線x4與圓C1不相交,所以直線l的斜率存在設(shè)直線l的方程為yk(x4),圓C1的圓心(3,1)到直線l的距離為d,因?yàn)閳AC1被直線l截得的弦長為2,所以d1.由點(diǎn)到直線的距離公式得d,化簡得k(24k7)0,即k0或k,所以直線l的方程為y0或y(x4),即y0或7x24y280.答案:y0或7x24y280重難增分點(diǎn)、直線與圓的綜合問題考法全析一、曾經(jīng)這樣考1與圓有關(guān)的范圍問題(2
15、014全國卷)設(shè)點(diǎn)M(x0,1),若在圓 O:x2y21上存在點(diǎn)N,使得OMN45,則x0的取值范圍是()A1,1B.C, D. 解析:選A法一:常規(guī)思路穩(wěn)解題由題意可知M在直線y1上運(yùn)動(dòng),設(shè)直線y1與圓x2y21相切于點(diǎn)P(0,1)當(dāng)x00即點(diǎn)M與點(diǎn)P重合時(shí),顯然圓上存在點(diǎn)N(1,0)符合要求;當(dāng)x00時(shí),過M作圓的切線,切點(diǎn)之一為點(diǎn)P,此時(shí)對(duì)于圓上任意一點(diǎn)N,都有OMNOMP,故要存在OMN45,只需OMP45.特別地,當(dāng)OMP45時(shí),有x01.結(jié)合圖形可知,符合條件的x0的取值范圍為1,1法二:特殊思路妙解題如圖,過O作OPMN于點(diǎn)P,則|OP|OM|sin 451,|OM|,即,x1,
16、即1x01.啟思維本題考查直線與圓的位置關(guān)系(圓的切線問題)、存在性問題,數(shù)形結(jié)合法是解決此類題目的最有效方法二、還可能這樣考2與圓有關(guān)的最值問題已知從圓C:(x1)2(y2)22外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|PO|,則當(dāng)|PM|取最小值時(shí)點(diǎn)P的坐標(biāo)為_解析:如圖所示,連接CM,CP.由題意知圓心C(1,2),半徑r.因?yàn)閨PM|PO|,所以|PO|2r2|PC|2,所以xy2(x11)2(y12)2,即2x14y130.要使|PM|的值最小,只需|PO|的值最小即可當(dāng)PO垂直于直線2x4y30時(shí),即PO所在直線的方程為2xy0時(shí),|PM|的值最小
17、,此時(shí)點(diǎn)P為兩直線的交點(diǎn),由解得故當(dāng)|PM|取最小值時(shí)點(diǎn)P的坐標(biāo)為.答案:啟思維本題考查圓的切線長問題,解決此類問題一般放在由該點(diǎn)與切點(diǎn)的連線、半徑及該點(diǎn)與圓心連線構(gòu)成的直角三角形中求解3與圓有關(guān)的定點(diǎn)問題已知圓O:x2y21,點(diǎn)P為直線1上一動(dòng)點(diǎn),過點(diǎn)P向圓O引兩條切線PA,PB,A,B為切點(diǎn),則直線AB經(jīng)過定點(diǎn)()A. B.C. D.解析:選B因?yàn)辄c(diǎn)P是直線1上的一動(dòng)點(diǎn),所以設(shè)P(42m,m)因?yàn)镻A,PB是圓x2y21的兩條切線,切點(diǎn)分別為A,B,所以O(shè)APA,OBPB,所以點(diǎn)A,B在以O(shè)P為直徑的圓C上,即弦AB是圓O和圓C的公共弦所以圓C的方程為x(x42m)y(ym)0,又x2y2
18、1,所以得,(2m4)xmy10,即公共弦AB所在的直線方程為(2xy)m(4x1)0,令得所以直線AB過定點(diǎn).啟思維本題考查圓的切線問題、兩圓公共弦所在直線的求法以及直線過定點(diǎn)問題解決直線過定點(diǎn)問題時(shí),應(yīng)先將含參的直線方程化為以參數(shù)為主元的形式,再令參數(shù)主元的系數(shù)為0即可求得定點(diǎn)坐標(biāo)4與向量等知識(shí)的綜合問題在平面直角坐標(biāo)系xOy中,過點(diǎn)M(1,0)的直線l與圓x2y25交于A,B兩點(diǎn),其中點(diǎn)A在第一象限,且2,則直線l的方程為_解析:法一:由題意,設(shè)直線l的方程為xmy1(m0),與x2y25聯(lián)立,消去x并整理得(m21)y22my40.設(shè)A(x1,y1),B(x2,y2),則(1x2,y2
19、),(x11,y1),y1y2,y1y2.因?yàn)?,所以y22y1,聯(lián)立,可得m21,又點(diǎn)A在第一象限,所以y10,則m1,所以直線l的方程為xy10.法二:由題意,設(shè)直線l的方程為xmy1(m0),即xmy10,所以圓心O到直線l的距離d.又2,且|OM|1,圓x2y25的半徑r,所以2(),即3,所以95,解得m21,又點(diǎn)A在第一象限,所以m1,故直線l的方程為xy10.答案:xy10啟思維本題將直線與圓的位置關(guān)系、共線向量問題相綜合,考查直線方程的求法直線與圓的綜合問題常利用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題,通過代數(shù)的計(jì)算,使問題得到解決增分集訓(xùn)1(2018全
20、國卷)直線xy20分別與x軸,y軸交于A,B兩點(diǎn),點(diǎn)P在圓(x2)2y22上,則ABP面積的取值范圍是()A2,6 B4,8C,3 D2,3解析:選A設(shè)圓(x2)2y22的圓心為C,半徑為r,點(diǎn)P到直線xy20的距離為d,則圓心C(2,0),r,所以圓心C到直線xy20的距離為2,可得dmax2r3,dmin2r.由已知條件可得|AB|2,所以ABP面積的最大值為|AB|dmax6,ABP面積的最小值為|AB|dmin2.綜上,ABP面積的取值范圍是2,62(2017江蘇高考)在平面直角坐標(biāo)系xOy中,A(12,0),B(0,6),點(diǎn)P在圓O:x2y250上若20,則點(diǎn)P的橫坐標(biāo)的取值范圍是_
21、解析:設(shè)P(x,y),則(12x,y)(x,6y)x(x12)y(y6)20.又x2y250,所以2xy50,所以點(diǎn)P在直線2xy50的上方(包括直線上)又點(diǎn)P在圓x2y250上,由解得x5或x1,結(jié)合圖象,可得5x1,故點(diǎn)P的橫坐標(biāo)的取值范圍是5,1答案:5,13已知直線l1:x2y0的傾斜角為,傾斜角為2的直線l2與圓M:x2y22x2yF0交于A,C兩點(diǎn),其中A(1,0),B,D在圓M上,且位于直線l2的兩側(cè),則四邊形ABCD的面積的最大值是_解析:因?yàn)橹本€l1:x2y0的傾斜角為,所以tan ,所以直線l2的斜率ktan 2,所以直線l2的方程為y0(x1),即4x3y40.又A(1,
22、0)在圓M上,所以(1)22F0,解得F1,所以圓M的方程為x2y22x2y10,化為標(biāo)準(zhǔn)方程為(x1)2(y1)21,所以圓心M(1,1),半徑r1.所以圓心M到直線l2的距離d,所以|AC| ,即|AC|2.因?yàn)锽,D兩點(diǎn)在圓上,且位于直線l2的兩側(cè),則四邊形ABCD的面積可以看成是ABC和ACD的面積之和,如圖所示,當(dāng)BD垂直平分AC(即BD為直徑)時(shí),兩三角形的面積之和最大,即四邊形ABCD的面積最大,此時(shí)AC,BD相交于點(diǎn)E,則四邊形ABCD的最大面積S|AC|BE|AC|DE|AC|BD|2.答案:專題跟蹤檢測(對(duì)應(yīng)配套卷P191)一、全練保分考法保大分1過點(diǎn)(3,1)作圓(x1)
23、2y2r2的切線有且只有一條,則該切線的方程為()A2xy50B2xy70Cx2y50 Dx2y70解析:選B過點(diǎn)(3,1)作圓(x1)2y2r2的切線有且只有一條,點(diǎn)(3,1)在圓(x1)2y2r2上,圓心與切點(diǎn)連線的斜率k,切線的斜率為2,則圓的切線方程為y12(x3),即2xy70.2圓心在直線x2y0上的圓C與y軸的負(fù)半軸相切,圓C截x軸所得的弦長為2,則圓C的標(biāo)準(zhǔn)方程為()A(x2)2(y)28B(x)2(y2)28C(x2)2(y)28D(x)2(y2)28解析:選A法一:設(shè)圓心為(r0),半徑為r.由勾股定理()22r2,解得r2,圓心為(2,),圓C的標(biāo)準(zhǔn)方程為(x2)2(y)
24、28.法二:四個(gè)圓的圓心分別為(2,),(,2),(2,),(,2),將它們逐一代入x2y0,只有A選項(xiàng)滿足3已知圓M:x2y22ay0(a0)截直線xy0所得線段的長度是2.則圓M與圓N:(x1)2(y1)21的位置關(guān)系是()A內(nèi)切 B相交C外切 D相離解析:選B由題意知圓M的圓心為(0,a),半徑Ra,因?yàn)閳AM截直線xy0所得線段的長度為2,所以圓心M到直線xy0的距離d(a0),解得a2,即圓M的圓心為(0,2),又知圓N的圓心為(1,1),半徑r1,所以|MN|,則Rr0),則r64,所以圓C的方程為(x4)2y216.法二:設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2)(x1
25、0,x20),由題設(shè)知xyxy.又y2x1,y2x2,故x2x1x2x2,即(x1x2)(x1x22)0,由x10,x20,可知x1x2,故A,B兩點(diǎn)關(guān)于x軸對(duì)稱,所以圓心C在x軸上設(shè)點(diǎn)C的坐標(biāo)為(r,0)(r0),則點(diǎn)A的坐標(biāo)為,于是22r,解得r4,所以圓C的方程為(x4)2y216.7設(shè)M,N分別為圓O1:x2y212y340和圓O2:(x2)2y24上的動(dòng)點(diǎn),則M,N兩點(diǎn)間的距離的取值范圍是_解析:圓O1的方程可化為x2(y6)22,其圓心為O1(0,6),半徑r1.圓O2的圓心O2(2,0),半徑r22,則|O1O2|2,則|MN|max22,|MN|min22,故M,N兩點(diǎn)間的距離
26、的取值范圍是22,22答案:22,228過點(diǎn)P(3,1),Q(a,0)的光線經(jīng)x軸反射后與圓x2y21相切,則a的值為_解析:點(diǎn)P(3,1)關(guān)于x軸對(duì)稱的點(diǎn)為P(3,1),所以直線PQ的方程為x(a3)ya0,由題意得直線PQ與圓x2y21相切,所以1,解得a.答案:9已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:yx1被圓C所截得的弦長為2,則過圓心且與直線l垂直的直線的方程為_解析:由題意,設(shè)所求的直線方程為xym0,圓心坐標(biāo)為(a,0)(a0),則由題意知22(a1)2,解得a3或1(舍去),故圓心坐標(biāo)為(3,0),因?yàn)閳A心(3,0)在所求的直線上,所以30m0,解得m3,故所
27、求的直線方程為xy30.答案:xy3010(2018全國卷)設(shè)拋物線C:y24x的焦點(diǎn)為F,過F且斜率為k(k0)的直線l與C交于A,B兩點(diǎn),|AB|8.(1)求l的方程;(2)求過點(diǎn)A,B且與C的準(zhǔn)線相切的圓的方程解:(1)由題意得F(1,0),l的方程為yk(x1)(k0)設(shè)A(x1,y1),B(x2,y2),由得k2x2(2k24)xk20.16k2160,故x1x2.所以|AB|AF|BF|(x11)(x21).由題設(shè)知8,解得k1或k1(舍去)因此l的方程為yx1.(2)由(1)得AB的中點(diǎn)坐標(biāo)為(3,2),所以AB的垂直平分線方程為y2(x3),即yx5.設(shè)所求圓的圓心坐標(biāo)為(x0
28、,y0),則解得或因此所求圓的方程為(x3)2(y2)216或(x11)2(y6)2144.11(2018成都模擬)在平面直角坐標(biāo)系xOy中,曲線:yx2mx2m(mR)與x軸交于不同的兩點(diǎn)A,B,曲線與y軸交于點(diǎn)C.(1)是否存在以AB為直徑的圓過點(diǎn)C?若存在,求出該圓的方程;若不存在,請(qǐng)說明理由(2)求證:過A,B,C三點(diǎn)的圓過定點(diǎn)解:由曲線:yx2mx2m(mR),令y0,得x2mx2m0.設(shè)A(x1,0),B(x2,0),則可得m28m0,解得m8或m0,又圓C與y軸相切,所以圓C的半徑ra,所以圓C的方程為(xa)2y2a2.因?yàn)辄c(diǎn)M(1,)在圓C上,所以(1a)2()2a2,解得a
29、2.所以圓C的方程為(x2)2y24.(2)證明:記直線OA的斜率為k(k0),則其方程為ykx.聯(lián)立消去y,得(k21)x24x0,解得x10,x2.所以A.由kkOB2,得kOB,直線OB的方程為yx,在點(diǎn)A的坐標(biāo)中用代換k,得B.當(dāng)直線l的斜率不存在時(shí),得k22,此時(shí)直線l的方程為x.當(dāng)直線l的斜率存在時(shí),即k22,則直線l的斜率為.故直線l的方程為y,即y,所以直線l過定點(diǎn).綜上,直線l恒過定點(diǎn),定點(diǎn)坐標(biāo)為.二、強(qiáng)化壓軸考法拉開分1已知圓C:x2y21,點(diǎn)P(x0,y0)在直線l:3x2y40上,若在圓C上總存在兩個(gè)不同的點(diǎn)A,B,使,則x0的取值范圍是()A. B.C. D.解析:選C如圖,OP與AB互相垂直平分,圓心到直線AB的距離1,xy4.又3x02y040,y02x0,代入得x24,解得0x00,m0,得b222k2.由根與系數(shù)的關(guān)系,得x1x2,x1x2.由k1k23,得(kx1b)(kx2b)3x1x2,即(k23)x1x2bk(x1x2)b20.將代入,整理得b23k2.由得b23k20,解得k.由和,解得k.要使k1,k2,k有意義,則x10,x20,所以0不是方程(*)的根,所以b220,即k1且k1.由,得k的取值范圍為,1)(1,
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (人教版)語文九年級(jí)上學(xué)期同步練習(xí)課件:名著導(dǎo)讀(一) (28)
- 操作流程培訓(xùn)教材
- 單機(jī)版數(shù)據(jù)采集工具講義-學(xué)校部分
- 危險(xiǎn)性較大的分部分項(xiàng)工程安全管理規(guī)定號(hào)文和號(hào)令新舊對(duì)比
- 危機(jī)管理溝通課件
- cLINK最后米同軸電纜接入解決方案
- CISVI標(biāo)志設(shè)計(jì)課程
- 《時(shí)間的計(jì)算》PPT課件
- 《答謝中書書》上課
- 工作零差錯(cuò)溝通零距離服務(wù)零投訴
- 工作中如何應(yīng)用概念性銷售
- 課件八單位防火
- 第四講概念(二)
- 市場最新硬件技術(shù)顯示器
- 基礎(chǔ)醫(yī)學(xué)病原生物學(xué)課件微生物學(xué)概述