2022屆九年級數(shù)學(xué)下冊 第二章 2.5 直線與圓的位置關(guān)系練習(xí) (新版)湘教版
《2022屆九年級數(shù)學(xué)下冊 第二章 2.5 直線與圓的位置關(guān)系練習(xí) (新版)湘教版》由會員分享,可在線閱讀,更多相關(guān)《2022屆九年級數(shù)學(xué)下冊 第二章 2.5 直線與圓的位置關(guān)系練習(xí) (新版)湘教版(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022屆九年級數(shù)學(xué)下冊 第二章 2.5 直線與圓的位置關(guān)系練習(xí) (新版)湘教版 基礎(chǔ)題 知識點1 直線與圓的位置關(guān)系的判定 1.下圖中直線l是⊙O的切線的是(C) 2.在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以點C為圓心,以2.5 cm為半徑畫圓,則⊙C與直線AB的位置關(guān)系是(A) A.相交 B.相切 C.相離 D.不能確定 3.如圖為平面上⊙O與四條直線l1,l2,l3,l4的位置關(guān)系.若⊙O的半徑為2 cm,且O點到其中一條直線的距離為2.2 cm,則這條直線是(C) A.ll B.l2 C.l3 D.l4
2、 4.如圖,已知點A,B在半徑為1的⊙O上,∠AOB=60°,延長OB至C,過點C作直線OA的垂線記為l,則下列說法正確的是(D) A.當(dāng)BC等于0.5時,l與⊙O相離 B.當(dāng)BC等于2時,l與⊙O相切 C.當(dāng)BC等于1時,l與⊙O相交 D.當(dāng)BC不為1時,l與⊙O不相切 5.在平面直角坐標(biāo)系xOy中,以點(-3,4)為圓心,4為半徑的圓(C) A.與x軸相交,與y軸相切 B.與x軸相離,與y軸相交 C.與x軸相切,與y軸相交 D.與x軸相切,與y軸相離 6.如圖,在矩形ABCD中,AB=6,BC=4,⊙O是以AB為直徑的圓,則直線DC與⊙O的位置關(guān)系是相離
3、. 7.(教材P65例1變式)在Rt△ABC中,∠C=90°,AB=4 cm,BC=2 cm,以C為圓心,r為半徑的圓與AB有何種位置關(guān)系?請你寫出判斷過程. (1)r=1.5 cm;(2)r= cm;(3)r=2 cm. 解:(1)相離.判斷過程略. (2)相切.判斷過程略. (3)相交.判斷過程略. 知識點2 直線與圓的位置關(guān)系的性質(zhì) 8.已知,⊙O的直徑等于12 cm,圓心O到直線l的距離為5 cm,則直線l與⊙O的交點個數(shù)為(C) A.0 B.1 C.2 D.無法確定 9.已知⊙O的半徑為5,直線l是⊙O的切線,則點O到直線l的距離是(C) A.2
4、.5 B.3 C.5 D.10 10.已知⊙O的半徑為4,直線l與⊙O不相交,則圓心到直線l的距離d一定滿足(C) A.d>4 B.d=4 C.d≥4 D.d≤4 易錯點 直線與圓的位置關(guān)系未考慮全面而漏解 11.已知⊙O半徑為2,直線l上有一點P滿足PO=2,則直線l與⊙O的位置關(guān)系是相切與相交. 中檔題 12.如圖,在平面直角坐標(biāo)系xOy中,半徑為2的⊙P的圓心P的坐標(biāo)為(-3,0),將⊙P沿x軸正方向平移,使⊙P與y軸相切,則平移的距離為(B) A.1 B.1或5 C.3 D.5 13.在矩形ABCD中,AB=3
5、,AD=4,點O為邊AD的中點.如果以點O為圓心,r為半徑的圓與對角線BD所在的直線相切,那么r的值是. 14.已知⊙O的半徑是5,圓心O到直線AB的距離為2,則⊙O上有且只有3個點到直線AB的距離為3. 15.已知圓心O到直線m的距離為d,⊙O的半徑為r. (1)當(dāng)d,r是方程x2-9x+20=0的兩根時,判斷直線m與⊙O的位置關(guān)系? (2)當(dāng)d,r是方程x2-4x+p=0的兩根時,直線m與⊙O相切,求p的值. 解:(1)解方程x2-9x+20=0,得d=5,r=4或d=4,r=5. 當(dāng)d=5,r=4時,d>r,此時直線m與⊙O相離. 當(dāng)d=4,r=5時,d<r,此時直線m與⊙
6、O相交. (2)當(dāng)直線m與⊙O相切時,d=r,(x1-x2)2=0=(x1+x2)2-4x1x2, 即16-4p=0,解得p=4. 16.如圖,在△ABC中,∠B=30°,∠C=90°,AC=6,O是AB邊上的一動點,以O(shè)為圓心,OA為半徑畫圓. (1)設(shè)OA=x,則x為多少時,⊙O與BC相切? (2)當(dāng)⊙O與直線BC相離或相交時,分別寫出x的取值范圍. 解:(1)在Rt△ABC中, ∵∠B=30°,∠C=90°,AC=6, ∴AB=12. 若⊙O與BC相切于點D,過點O作OD⊥BC,則 OD=OA. ∵OB=12-x. ∴OD=OB=6-x. ∴6-x=x.
7、 解得x=4. ∴當(dāng)x=4時,⊙O與BC相切. (2)當(dāng)⊙O與直線BC相離時,0<x<4; 當(dāng)⊙O與直線BC相交時,4<x≤12. 綜合題 17.設(shè)邊長為2a的正方形的中心A在直線l上,它的一組對邊垂直于直線l,半徑為r的⊙O的圓心O在直線l上運動,點A,O間距離為d. 圖1 圖2 圖3 (1)如圖1,當(dāng)r<a時,根據(jù)d與a,r之間關(guān)系,將⊙O與正方形的公共點個數(shù)填入下表: d,a,r之間關(guān)系 公共點的個數(shù) d>a+r 0 d=a+r 1 a-r<d<a+r 2 d=a-r 1 d<a-r 0 所以,當(dāng)r<a時,⊙O與正
8、方形的公共點的個數(shù)可能有0,1,2個; (2)如圖2,當(dāng)r=a時,根據(jù)d與a,r之間關(guān)系,將⊙O與正方形的公共點個數(shù)填入下表: d,a,r之間關(guān)系 公共點的個數(shù) d>a+r 0 d=a+r 1 a≤d<a+r 2 d<a 4 所以,當(dāng)r=a時,⊙O與正方形的公共點個數(shù)可能有0,1,2,4個; (3)如圖3,當(dāng)⊙O與正方形有5個公共點時,試說明:r=a. 解:連接OC.則OE=OC=r,OF=EF-OE=2a-r.在Rt△OCF中,由勾股定理,得 OF2+FC2=OC2,即(2a-r)2+a2=r2,4a2-4ar+r2+a2=r2,5a2=4ar,5a=4r.
9、∴r=a. 第2課時 切線的性質(zhì) 基礎(chǔ)題 知識點 圓的切線的性質(zhì) 1.如圖,PA是⊙O的切線,切點為A,OP=4,∠APO=30°,則⊙O的半徑為(C) A.1 B. C.2 D.4 2.如圖,AB是⊙O的弦,BC與⊙O相切于點B,連接OA.若∠ABC=70°,則∠A等于(C) A.10° B.15° C.20° D.30° 3.如圖,△ABC的邊AC與⊙O相交于C,D兩點,且經(jīng)過圓心O,邊AB與⊙O相切,切點為B.已知∠A=30°,則∠C的大小是(A) A.30° B.45° C.60° D.40°
10、 4.如圖,兩個同心圓的半徑分別為4 cm和5 cm,大圓的一條弦AB與小圓相切,則弦AB的長為(C) A.3 cm B.4 cm C.6 cm D.8 cm 5.(xx·眉山)如圖所示,AB是⊙O的直徑,PA切⊙O于點A,線段PO交⊙O于點C,連接BC.若∠P=36°,則∠B等于(A) A.27° B.32° C.36° D.54° 6.(教材P69練習(xí)T2變式)如圖所示,⊙O與AC相切于點A,且AB=AC,BC與⊙O相交于點D,下列說法不正確的是(D) A.∠C=45° B.CD=BD C.∠DAB=∠DAC D.
11、CD=AB 7.(xx·湘潭)如圖,AB是⊙O的切線,點B為切線.若∠A=30°,則∠AOB=60°. 8.如圖,已知△ABC內(nèi)接于⊙O,BC是⊙O的直徑,MN與⊙O相切,切點為A.若∠MAB=30°,則∠B=60°. 9.如圖,在等腰△OAB中,OA=OB,以點O為圓心作圓與底邊AB相切于點C.求證:AC=BC. 證明:∵AB切⊙O于點C, ∴OC⊥AB. ∵OA=OB,∴AC=BC. 10.(教材P69練習(xí)T2變式)如圖,已知AB是⊙O的直徑,直線BC與⊙O相切于點B,∠ABC的平分線BD交⊙O于點D,AD的延長線交BC于點C. (1)求∠BAC的度數(shù)
12、; (2)求證:AD=CD. 解:(1)∵AB是⊙O的直徑, ∴∠ADB=90°. ∵BD平分∠ABC, ∴∠ABD=∠CBD. ∵直線BC與⊙O相切于點B, ∴∠ABC=90°. ∴∠ABD=45°. ∴∠BAC=180°-90°-45°=45°. (2)證明:∵∠BAC=45°,∠ABC=90°, ∴∠C=45°.∴AB=CB. 又∵BD⊥AC,∴AD=CD. 中檔題 11.(xx·泰安)如圖,BM與⊙O相切于點B.若∠MBA=140°,則∠ACB的度數(shù)為(A) A.40° B.50° C.60° D.70° 12.如圖,已知線段
13、OA交⊙O于點B,且OB=AB,點P是⊙O上的一個動點,那么∠OAP的最大值是(A) A.30° B.45° C.60° D.90° 13.如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,過C點的切線與AB的延長線交于P點.若∠P=40°,則∠D的度數(shù)為115°. 14.如圖,一個邊長為4 cm的等邊三角形ABC的高與⊙O的直徑相等,⊙O與BC相切于點C,與AC相交于點E,則CE的長為3cm. 15.如圖,在⊙O中,AB,CD是直徑,BE是切線,B為切點,連接AD,BC,BD. (1)求證:△ABD≌△CDB; (2)若∠DBE=37°,求∠ADC的度數(shù)
14、. 解:(1)證明:∵AB,CD是直徑, ∴∠ADB=∠CBD=90°. 在Rt△ABD和Rt△CDB中, ∴Rt△ABD≌Rt△CDB(HL). (2)∵BE是切線, ∴AB⊥BE.∴∠ABE=90°. ∴∠ABD+∠DBE=90°. ∵AB為⊙O的直徑, ∴∠ABD+∠BAD=90°.∴∠BAD=∠DBE. ∵OA=OD,∴∠BAD=∠CDA. ∴∠ADC的度數(shù)為37°. 16.如圖,AC是⊙O的直徑,四邊形ABCD是平行四邊形,AD,BC分別交⊙O于點F,E,連接AE,CF. (1)試判斷四邊形AECF是哪種特殊的四邊形,并說明理由; (2)若AB
15、與⊙O相切于點A,且⊙O的半徑為5 cm,弦CE的長為8 cm,求AB的長. 解:(1)四邊形AECF是矩形.理由如下: ∵AC是⊙O的直徑, ∴∠AEC=∠AFC=90°. ∵四邊形ABCD是平行四邊形, ∴AF∥EC.∴∠EAF=∠AEC=90°. ∴四邊形AECF是矩形. (2)∵AB與⊙O相切于點A,∴∠BAC=90°. ∵∠ACE=∠BCA. ∴Rt△CAE∽Rt△CBA. ∴CA∶CB=CE∶CA,即10∶CB=8∶10. ∴CB=,AB==. 綜合題 17.(xx·婁底)如圖,C,D是以AB為直徑的⊙O上的點,=,弦CD交AB于點E. (1)當(dāng)
16、PB是⊙O的切線時,求證:∠PBD=∠DAB; (2)求證:BC2-CE2=CE·DE; (3)已知OA=4,E是半徑OA的中點,求線段DE的長. 解:(1)證明:∵AB是直徑, ∴∠ADB=90°,即∠DAB+∠ABD=90°. 又∵PB是⊙O的切線, ∴PB⊥AB. ∴∠ABP=90°,即∠ABD+∠PBD=90°. ∴∠PBD=∠DAB. (2)證明:∵=, ∴∠EBC=∠BDC. 又∵∠BCE=∠BCD, ∴△BCE∽△DCB. ∴=. ∴BC2=CE·CD. ∴BC2=CE·(CE+DE). ∴BC2=CE2+CE·DE. ∴BC2-CE2=
17、CE·DE. (3)連接OC. ∵E是OA的中點, ∴AE=OE=2. ∴BE=4+2=6. ∵=, ∴∠AOC=∠BOC=90°. 在Rt△COE中,OC=4,OE=2, 由勾股定理,得CE=2. ∵=. ∴∠DAB=∠BCD. 又∵∠AED=∠CEB, ∴△ADE∽△CBE. ∴=. ∴=. ∴DE=. *2.5.3 切線長定理 基礎(chǔ)題 知識點 切線長定理 1.如圖,PA,PB分別切⊙O于A,B兩點.如果∠PAB=60°,PA=2,那么AB的長為(B) A.1 B.2 C.3 D.4 2.如圖,PA,PB是⊙O的兩條切線,切
18、點分別是A,B.如果OP=2,OA=1,那么PB等于(C) A.1 B.2 C. D.2 3.如圖,PA,PB是⊙O的切線,切點為A,B.若OP=4,PA=2,則∠AOB的度數(shù)為(C) A.60° B.90° C.120° D.無法確定 4.如圖,AB為⊙O的直徑,點C在AB的延長線上,CD,CE分別與⊙O相切于點D,E.若AD=2,∠DAC=∠DCA,則CE=2. 5.如圖,PA,PB是⊙O的兩條切線,A,B是切點.若∠APB=60°,PO=2,則⊙O的半徑等于1. 6.如圖,四邊形ABCD的邊AB,BC,CD,DA和⊙O相切,且A
19、B=8 cm,CD=5 cm,則AD+BC=13cm. 7.如圖,PA,PB分別切⊙O于點A,B,連接PO與⊙O相交于點C,連接AC,BC,求證:AC=BC. 證明:∵PA,PB分別切⊙O于點A,B, ∴PA=PB, ∠APC=∠BPC. 又∵PC=PC, ∴△APC≌△BPC(SAS). ∴AC=BC. 8.如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑,∠P=60°. (1)求∠BAC的度數(shù); (2)當(dāng)OA=2時,求AB的長. 解:(1)∵PA,PB是⊙O的切線, ∴AP=BP, ∠PAC=90°. 又∵∠P=60°, ∴∠PAB
20、=60°. ∴∠BAC=∠PAC-∠PAB=30°. (2)連接OP. 在Rt△AOP中,OA=2,∠APO=30°. ∴OP=4. 由勾股定理,得AP=2. ∵AP=BP,∠APB=60°, ∴△APB是等邊三角形. ∴AB=AP=2. 中檔題 9.(教材P71例5變式)如圖所示,AB是⊙O的直徑,點C為⊙O外一點,CA,CD是⊙O的切線,A,D為切點,連接BD,AD.若∠ACD=30°,則∠DBA的大小是(D) A.15° B.30° C.60° D.75° 10.如圖,⊙O內(nèi)切于四邊形ABCD,AB=10,BC=7,CD=8,則AD的
21、長度為(D) A.8 B.9 C.10 D.11 11.如圖,AE,AD和BC分別切⊙O于點E,D,F(xiàn).如果AD=20,那么△ABC的周長為(C) A.20 B.30 C.40 D.50 12.如圖,PA,PB分別切⊙O于點A,B,連接PO,與AB相交于點D,C是⊙O上一點,∠C=60°. (1)求∠APB的大??; (2)若PO=20 cm,求△AOB的面積. 解:(1)∵∠C=60°, ∴∠AOB=120°. ∵PA,PB分別切⊙O于點A,B, ∴∠PAO=∠PBO=90°. ∴∠APB=60°. (2)∵PA,PB分
22、別切⊙O于點A,B,∴PA=PB. ∴點P在AB的垂直平分線上.同理,點O在AB的垂直平分線上.∴PO垂直平分AB. ∵∠APB=60°,∠AOB=120°, ∴∠OPB=∠OPA=30°,∠POB=∠POA=60°. ∵PO=20 cm,∴OB=10 cm. ∴OD=OB·cos∠POB=5 cm. ∴BD=OB·sin∠POB=5 cm. ∴AB=2BD=10 cm. ∴S△AOB=×10×5=25 cm2. 13.(教材P72練習(xí)T1變式)如圖,直線AB,BC,CD分別與⊙O相切于點E,F(xiàn),G,且AB∥CD,OB=6 cm,OC=8 cm.求: (1)∠BOC的度
23、數(shù); (2)BE+CG的長; (3)⊙O的半徑. 解:(1)連接OF. 根據(jù)切線長定理,得BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG. ∵AB∥CD, ∴∠ABC+∠BCD=180°. ∴∠OBC+∠OCF=90°. ∴∠BOC=90°. (2)由(1)知,∠BOC=90°. ∵OB=6 cm,OC=8 cm, ∴由勾股定理,得BC==10 cm. ∴BE+CG=BC=10 cm. (3)∵OF⊥BC,由面積相等,得OF==4.8 cm. 綜合題 14.如圖,AD∥BC,AB⊥BC,以AB為直徑的⊙O與DC相切于E.已知AB=8,邊BC
24、比AD大6. (1)求邊AD,BC的長; (2)在直徑AB上是否存在一動點P,使以A,D,P為頂點的三角形與△BCP相似?若存在,求出AP的長;若不存在,請說明理由. 解:(1)過點D作DF⊥BC于F, 在Rt△DFC中,DF=AB=8,F(xiàn)C=BC-AD=6, ∴DC2=62+82=100,即DC=10. 設(shè)AD=x,則DE=AD=x,EC=BC=x+6, ∴x+(x+6)=10. ∴x=2.∴AD=2,BC=2+6=8. (2)存在符合條件的P點.設(shè)AP=y(tǒng),則BP=8-y,△ADP與△BCP相似,有兩種情況: ①△ADP∽△BCP時,有 =,即=,∴y=. ②△
25、ADP∽△BPC時,有 =,即=.∴y=4. 故存在符合條件的點P,此時AP=或4. 2.5.4 三角形的內(nèi)切圓 基礎(chǔ)題 知識點1 三角形的內(nèi)切圓、內(nèi)心及作圖 1.已知△ABC的內(nèi)切圓O和各邊分別相切于點D,E,F(xiàn),則點O是△DEF的(D) A.三條中線的交點 B.三條高的交點 C.三條角平分線的交點 D.三條邊的中垂線的交點 2.關(guān)于三角形的內(nèi)心:①到三邊的距離相等;②到三個頂點的距離相等;③是三邊垂直平分線的交點;④是三條內(nèi)角平分線的交點.其中正確的說法有(B ) A.1個 B.2個 C.3個 D.4個 3.如圖,某石油公司計劃在三條公路圍成的一
26、塊平地上建一個加油站,綜合各種因素,要求這個加油站到三條公路的距離相等,則應(yīng)建在(A) A.△ABC的三條內(nèi)角平分線的交點處 B.△ABC的三條高線的交點處 C.△ABC三邊的中垂線的交點處 D.△ABC的三條中線的交點處 4.若三角形的內(nèi)心和外心重合,那么這個三角形是(D) A.直角三角形 B.等腰直角三角形 C.等腰三角形 D.等邊三角形 5.制作鐵皮桶,需在一塊三角形材料上截取一個面積最大的圓,請畫出該圓.(保留作圖痕跡,不要求寫作法) 解:⊙O即為所求作的圓. 知識點2 三角形的內(nèi)心、內(nèi)切圓的有關(guān)計算與證明 6.(xx·眉山)如圖,在△
27、ABC中,∠A=66°,點I是內(nèi)心,則∠BIC的大小為(C) A.114° B.122° C.123° D.132° 7.等邊三角形外接圓的半徑為2,那么它內(nèi)切圓的半徑為(A) A.1 B. C. D.2 8.(xx·湖州)如圖,已知△ABC的內(nèi)切圓⊙O與BC邊相切于點D,連接OB,OD.若∠ABC=40°,則∠BOD的度數(shù)是70°. 9.如圖所示,⊙O是△ABC的內(nèi)切圓,分別切AB,BC,CA于點D,E,F(xiàn),設(shè)⊙O的半徑為r,BC=a,CA=b,AB=c.求證:S△ABC=r(a+b+c). 證明:連接OA,OB,OC,OD,
28、OE,OF. ∵⊙O是△ABC的內(nèi)切圓, ∴OD=OE=OF=r. ∵S△ABC=S△AOB+S△BOC+S△COA, ∴S△ABC=cr+ar+br=r(a+b+c). 10.如圖,在△ABC中,∠C=90°,⊙O是△ABC的內(nèi)切圓,D,E,F(xiàn)是切點. (1)求證:四邊形ODCE是正方形; (2)如果AC=6,BC=8,求內(nèi)切圓⊙O的半徑. 解:(1)證明:∵⊙O是△ABC的內(nèi)切圓, ∴OD⊥BC,OE⊥AC. 又∠C=90°, ∴四邊形ODCE是矩形. ∵OD=OE, ∴四邊形ODCE是正方形. (2)∵∠C=90°,AC=6,BC=8, ∴AB==1
29、0. 由切線長定理,得AF=AE,BD=BF,CD=CE, ∴CD+CE=BC+AC-BD-AE=BC+AC-AB=4,則CE=2. 即⊙O的半徑為2. 易錯點 內(nèi)心與外心概念混淆不清 11.如圖,△ABC是圓的內(nèi)接三角形,點P是△ABC的內(nèi)心,∠A=50°,則∠BPC的度數(shù)為115°. 中檔題 12.《九章算術(shù)》中“今有勾七步,股有二十四步,問勾中容圓徑幾何?”其意思是:“今有直角三角形,勾(短直角邊)長為7步,股(長直角邊)長為24步,問該直角三角形的容圓(內(nèi)切圓)直徑是多少?”(C) A.4步 B.5步 C.6步 D.8步 13.(xx
30、·威海)如圖,在扇形CAB中,CD⊥AB,垂足為D,⊙E是△ACD的內(nèi)切圓,連接AE,BE,則∠AEB的度數(shù)為135°. 14.已知,在△ABC中,內(nèi)切圓I和邊BC,CA,AB分別相切于點D,E,F(xiàn). (1)若∠A=60°,求∠FDE的度數(shù); (2)若∠A=130°,求∠FDE的度數(shù); (3)你能猜想出∠FDE與∠A有什么數(shù)量關(guān)系嗎?不需要證明. 解:(1)連接IE,IF. ∵內(nèi)切圓I和邊BC,CA,AB分別相切于點D,E,F(xiàn), ∴∠AEI=∠AFI=90°. ∵∠A=60°, ∴∠EIF=360°-∠AEI-∠AFI-∠A=120°. ∴∠FDE=∠EIF=60°.
31、 (2)方法同上,∠EIF=50°. ∴∠FDE=∠EIF=25°. (3)∠FDE=90°-∠A. 15.如圖所示,已知△ABC的內(nèi)心為I,外心為O. (1)試找出∠A與∠BOC,∠A與∠BIC的數(shù)量關(guān)系; (2)由(1)題的結(jié)論寫出∠BOC與∠BIC的關(guān)系. 解:(1)∠A=∠BOC. ∵I是△ABC的內(nèi)心, ∴∠IBC=∠ABC,∠ICB=∠ACB. ∴∠BIC=180°-(∠IBC+∠ICB) =180°-(∠ABC+∠ACB) =180°-(180°-∠A) =90°+∠A. (2)∠BIC=90°+∠A =90°+×∠BOC =90°+∠BOC
32、. 綜合題 16.如圖,有一塊三角形余料ABC,∠B=90°,BC=3 m,AB=4 m,現(xiàn)有兩種余料的再利用方案,分別制作正方形和圓形桌面. 方案一,如圖1,作正方形DEFB,使它的四個頂點都在△ABC邊上; 方案二,如圖2,作△ABC的內(nèi)切圓O,它與三邊分別相切于點G,H,I. 請通過計算,比較哪種方案的利用率高. 圖1 圖2 解:設(shè)DE=x,則AD=4-x, ∵DE⊥AB,∴△ADE∽△ABC. ∴=,即=.解得x=. ∴S正方形DEFB=()2=. ∵△ABC中,∠B=90°,BC=3 m,AB=4 m, ∴AC=5 m. ∵點O是△ABC
33、的內(nèi)心,∴OI=OG=OH=r. ∴(AB+BC+AC)·r=AB·BC,即 (4+3+5)r=4×3,解得r=1. ∴S⊙O=π. ∵<π,∴方案二的利用率高. 2.5.2 圓的切線 第1課時 切線的判定 基礎(chǔ)題 知識點 圓的切線的判定 1.下列直線中,能判定為圓的切線的是(D) A.與圓有公共點的直線 B.過圓的半徑的外端點的直線 C.垂直于圓的半徑的直線 D.經(jīng)過直徑的一個端點,且垂直于這條直徑的直線 2.如圖,A是圓O上一點,AO=5,PO=13,AP=12,則PA與圓O的位置關(guān)系是(C) A.無法確定 B.相交 C.相切 D.相離 3.如圖,
34、△ABC的一邊AB是⊙O的直徑,請你添加一個條件,使得BC是⊙O的切線,你所添加的條件為AB⊥BC. 4.如圖,A,B是⊙O上的兩點,AC是過A點的一條直線.如果∠AOB=120°,那么當(dāng)∠CAB的度數(shù)等于60°時,AC才能成為⊙O的切線. 5.(xx·邵陽)如圖所示,AB是⊙O的直徑,點C為⊙O上一點,過點B作BD⊥CD,垂足為D,連接BC,BC平分∠ABD.求證:CD為⊙O的切線. 證明:∵BC平分∠ABD, ∴∠OBC=∠DBC. ∵OB=OC,∴∠OBC=∠OCB. ∴∠DBC=∠OCB.∴OC∥BD. ∵BD⊥CD,∴OC⊥CD. 又∵OC為⊙O的半徑,
35、 ∴CD為⊙O的切線. 6.如圖,AB為⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠DCB=∠A.求證:CD是⊙O的切線. 證明:連接OC, ∵AB是⊙O的直徑, ∴∠ACB=90°. ∴∠A+∠ABC=90°. 又∵OB=OC, ∴∠OBC=∠OCB. 又∵∠DCB=∠A, ∴∠A+∠ABC=∠DCB+∠OCB=90°. ∴OC⊥DC. 又∵OC是⊙O的半徑, ∴CD是⊙O的切線. 7.(教材P67練習(xí)T2變式)如圖,在△ABO中,OA=OB,C是邊AB的中點,以O(shè)為圓心的圓過點C. (1)求證:AB與⊙O相切; (2)若∠AOB=12
36、0°,AB=4,求⊙O的面積. 解:(1)證明:連接CO. ∵AO=BO, ∴△AOB是等腰三角形. ∵C是邊AB的中點, ∴OC⊥AB. ∵OC是⊙O的半徑, ∴AB與⊙O相切. (2)在等腰△AOB中,∠AOB=120°, ∴∠A=∠B=30°. ∵C是邊AB的中點,AB=4,∴AC=2. 在Rt△ACO中,∠ACO=90°,∠A=30°,AC=2, ∴OC=AC=2. ∴S=π×22=4π. 易錯點 判斷圓和各邊相切時考慮不全面而漏解 8.如圖,在平面直角坐標(biāo)系第一象限內(nèi)有一矩形OABC,B(4,2),現(xiàn)有一圓同時和這個矩形的三邊都相切,則此圓的圓心
37、P的坐標(biāo)為(1,1)或(3,1)或(2,0)或(2,2). 中檔題 9.如圖,AB是⊙O的直徑,BC交⊙O于點D,DE⊥AC于點E,要使DE是⊙O的切線,還需補(bǔ)充一個條件,則補(bǔ)充的條件不正確的是(A) A.DE=DO B.AB=AC C.CD=DB D.AC∥OD 10.如圖,AB為⊙O的直徑,點C為⊙O上的一點.若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為D.試判斷CD與⊙O的位置關(guān)系,并說明理由. 解:直線CD與⊙O相切.理由如下: 連接OC. ∵OA=OC, ∴∠BAC=∠OCA. ∵∠BAC=∠CAM, ∴∠OCA=∠CAM.∴OC∥
38、AM. ∵CD⊥AM,∴OC⊥CD. ∵OC為半徑, ∴直線CD與⊙O相切. 11.(1)如圖1,△ABC內(nèi)接于⊙O,AB為直徑,∠CAE=∠B,試說明AE與⊙O相切于點A; (2)在圖2中,若AB為非直徑的弦,∠CAE=∠B,AE還與⊙O相切于點A嗎?請說明理由. 圖1 圖2 解:(1)證明:∵AB為直徑, ∴∠ACB=90°. ∴∠B+∠BAC=90°.而∠CAE=∠B, ∴∠CAE+∠BAC=90°,即∠BAE=90°. ∴OA⊥AE. 又∵OA是⊙O的半徑, ∴AE與⊙O相切于點A. (2)AE還與⊙O相切于點A.理由如下: 作直徑
39、AD,連接DC, ∴∠D+∠DAC=90°. ∵∠B=∠D,而∠CAE=∠B, ∴∠CAE+∠DAC=90°,即∠DAE=90°. ∴OA⊥AE. 又∵OA是⊙O的半徑, ∴AE與⊙O相切于點A. 綜合題 12.如圖,已知⊙O的直徑為AB,AC⊥AB于點A,BC與⊙O相交于點D,在AC上取一點E,使得ED=EA. (1)求證:ED是⊙O的切線; (2)當(dāng)OA=3,AE=4時,求BC的長度. 解:(1)證明:連接OD. ∵AC⊥AB, ∴∠BAC=90°, 即∠OAE=90°. 在△AOE與△DOE中, ∴△AOE≌△DOE(SSS). ∴∠OAE=∠ODE=90°,即OD⊥ED. 又∵OD是⊙O的半徑, ∴ED是⊙O的切線. (2)∵AB是直徑,∴∠ADB=90°. ∴∠ADC=90°. ∴∠ADE+∠CDE=90°,∠DAE+∠ACD=90°. ∵AE=DE,∴∠ADE=∠DAE. ∴∠CDE=∠ACD. ∴DE=CE. 又AE=DE, ∴AE=CE. ∴AC=2AE=8. ∵OA=3,∴AB=6. 在Rt△ABC中, BC===10. ∴BC的長度是10.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 12橋之美(教育精品)
- 美麗的小興安嶺PPT
- 第6課探索建設(shè)社會主義的道路(共27張)
- 化學(xué):《緒言》課件(新人教版選修4)1(教育精品)
- 第5課卷紙動物
- 外研版七下Module-9《Life-history》Unit-1ppt課件
- 喂-出來ppt課件1-(新版)新人教版
- 細(xì)胞中的糖類和脂質(zhì)(新教材)課件
- 小學(xué)生未來的作文ppt課件+想象類作文2套
- 用友T6生產(chǎn)管理模塊培訓(xùn)課件
- 八年級音樂下冊第三單元大海啊故鄉(xiāng)課件
- 大使館媽媽課件
- 人教版三年級語文下冊第六單元月球之謎
- 流程優(yōu)化管理咨詢報告(ppt 46頁)2
- 服裝行業(yè)統(tǒng)計分析三大典型方法