5、=2|x-1|.
當(dāng)x=0時(shí), y=2.可排除選項(xiàng)A,C.
當(dāng)x=-1時(shí),y=4.可排除選項(xiàng)B.
故選D.
3.D 因?yàn)樵诤瘮?shù)y=2|x|sin 2x中,y1=2|x|為偶函數(shù),y2=sin 2x為奇函數(shù),
所以y=2|x|sin 2x為奇函數(shù).
所以排除選項(xiàng)A,B.當(dāng)x=0,x=,x=π時(shí),sin 2x=0,故函數(shù)y=2|x|sin 2x在[0,π]上有三個(gè)零點(diǎn),排除選項(xiàng)C,故選D.
4.D 當(dāng)x=1時(shí),y=1+1+sin 1=2+sin 1>2,故排除A,C;當(dāng)x→+∞時(shí),y→+∞,故排除B,滿足條件的只有D,故選D.
5.B 由已知得與函數(shù)f(x)的圖像關(guān)于y軸對(duì)稱的圖像
6、的解析式為h(x)=x2+e-x- (x>0).
令h(x)=g(x),得ln(x+a)=e-x-,作函數(shù)M(x)=e-x-的圖像,顯然當(dāng)a≤0時(shí),函數(shù)y=ln(x+a)的圖像與M(x)的圖像一定有交點(diǎn).
當(dāng)a>0時(shí),若函數(shù)y=ln(x+a)的圖像與M(x)的圖像有交點(diǎn),則ln a<,則00時(shí),f(x)=sin x+ln x?F'(x)=cos x+,
當(dāng)x∈(0,1)時(shí),f'(x)>0,即函數(shù)f(x)在(0,1)上是增加的,排除B;
當(dāng)x=1時(shí),f(1)=sin 1>0,排除D;
因?yàn)閒(-x)
7、=sin(-x)+ln|-x|=-sin x+ln|x|≠±f(x),
所以函數(shù)f(x)為非奇非偶函數(shù),排除C,故選A.
7.B 由題意可知,y=f(x)與y=|x2-2x-3|的圖像都關(guān)于直線x=1對(duì)稱,所以它們的交點(diǎn)也關(guān)于直線x=1對(duì)稱.
當(dāng)m為偶數(shù)時(shí),xi=2·=m;
當(dāng)m為奇數(shù)時(shí),xi=2·+1=m,故選B.
8. 依題意得f(x+2)=-f(x+1)=f(x),即函數(shù)f(x)是以2為周期的函數(shù).g(x)=f(x)-kx-k在區(qū)間[-1,3]內(nèi)有4個(gè)零點(diǎn),即函數(shù)y=f(x)與y=k(x+1)的圖像在區(qū)間[-1,3]內(nèi)有4個(gè)不同的交點(diǎn).在坐標(biāo)平面內(nèi)畫出函數(shù)y=f(x)的圖像(如
8、圖所示),注意直線y=k(x+1)恒過點(diǎn)(-1,0),可知當(dāng)k∈時(shí),相應(yīng)的直線與函數(shù)y=f(x)在區(qū)間[-1,3]內(nèi)有4個(gè)不同的交點(diǎn),故實(shí)數(shù)k的取值范圍是.
9.B 設(shè)函數(shù)f(x)=4x和g(x)=logax,畫出兩個(gè)函數(shù)在上的圖像(圖略),可知當(dāng)a>1時(shí)不滿足條件,當(dāng)0,所以a的取值范圍為.
10.B 原方程可化為-|x-1|=ln y,即y=e-|x-1|,由于x=1時(shí),y=1,故排除C,D,當(dāng)x=0時(shí),y=<1,排除A選項(xiàng),故選B.
11.5 方程2f2(x)-3f(x)+1=0的解為f(x)=或1.作出y=f(x)的圖像,由圖像知零點(diǎn)
9、的個(gè)數(shù)為5.
12. 作出函數(shù)y=f(x)的圖像,如右圖所示,
∵g(x)=f(x)+3m有3個(gè)零點(diǎn),∴0<-3m<1,解得-0)的圖像可由y=x3的圖像向左平移1個(gè)單位長(zhǎng)度,再向上平移m個(gè)單位長(zhǎng)度得到,故函數(shù)f(x)的圖像關(guān)于點(diǎn)Q(-1,m)對(duì)稱.
由f(x)=(x+1)3+m(m>0)的圖像(略)可知,
點(diǎn)(-4,m-27)或點(diǎn)(2,m+27)到點(diǎn)Q(-1,m)的距離最大,
最大值為d==3,根據(jù)條件只需M≥3.故選A.
14.A 由題意可得f(x)=,x∈∪,
∵f(-x)==-=-f
10、(x),
∴函數(shù)f(x)為奇函數(shù),其圖像關(guān)于原點(diǎn)對(duì)稱,∴排除選項(xiàng)C.
又y'=f'(x)==,∴當(dāng)x∈時(shí),f'(x)>0,f(x)遞增,∴排除選項(xiàng)B和D.故選A.
15.5 ∵f(x+2)=f(x),∴函數(shù)f(x)是周期為2的函數(shù).
當(dāng)x∈[-1,0]時(shí),-x∈[0,1],此時(shí)f(-x)=-3x.
由f(x)是偶函數(shù),可知f(x)=f(-x)=-3x.
由ax+3a-f(x)=0,得a(x+3)=f(x).
設(shè)g(x)=a(x+3),分別作出函數(shù)f(x),g(x)在區(qū)間[-3,2]上的圖像,如圖所示.
因?yàn)?a<,且當(dāng)a=和a=時(shí),對(duì)應(yīng)的g(x)為圖中的兩條虛線,所以由圖像知兩個(gè)函數(shù)的圖像有5個(gè)不同的交點(diǎn),故方程有5個(gè)不同的根.