《2022高考物理二輪復習 第一部分 專題二 能量與動量 專題強化練(六)機械能守恒定律 功能關(guān)系》由會員分享,可在線閱讀,更多相關(guān)《2022高考物理二輪復習 第一部分 專題二 能量與動量 專題強化練(六)機械能守恒定律 功能關(guān)系(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考物理二輪復習 第一部分 專題二 能量與動量 專題強化練(六)機械能守恒定律 功能關(guān)系
考點1 機械能守恒定律的應用
1.(多選)如圖所示,質(zhì)量分別為m和2m的兩個小球A和B,中間用輕質(zhì)桿相連,在桿的中點O處有一固定轉(zhuǎn)動軸,把桿置于水平位置后釋放,在B球順時針擺動到最低位置的過程中(不計一切摩擦)( )
A.B球的重力勢能減少,動能增加,B球和地球組成的系統(tǒng)機械能守恒
B.A球的重力勢能增加,動能也增加,A球和地球組成的系統(tǒng)機械能不守恒
C.A球、B球和地球組成的系統(tǒng)機械能守恒
D.A球、B球和地球組成的系統(tǒng)機械能不守恒
解析:A球在上擺過程中,重力勢能增加,動能
2、也增加,機械能增加,B項正確;由于A球、B球和地球組成的系統(tǒng)只有重力做功,故系統(tǒng)的機械能守恒,C項正確,D項錯誤;所以B球和地球組成系統(tǒng)的機械能一定減少,A項錯誤.
答案:BC
2.(2018·天津卷)滑雪運動深受人民群眾的喜愛,某滑雪運動員(可視為質(zhì)點)由坡道進入豎直面內(nèi)的圓弧形滑道AB,從滑道的A點滑行到最低點B的過程中,由于摩擦力的存在,運動員的速率不變,則運動員沿AB下滑過程中( )
A.所受合外力始終為零 B.所受摩擦力大小不變
C.合外力做功一定為零 D.機械能始終保持不變
解析:運動員從A到B做曲線運動,所以合力一定不為零,A錯誤;運動員的速率不變,由FN-mgc
3、os θ=m?FN=mgcos θ+m知,在不同的位置,對曲面的壓力不同,進而摩擦力不同,B錯誤;由動能定理知,合外力做功一定為零,故C正確;運動員從A到B做曲線運動,動能不變,重力勢能減少,機械能不守恒,D錯誤.
答案:C
3.(多選)(2018·泰安檢測)如圖所示,將質(zhì)量為2m的重物懸掛在輕繩的一端,輕繩的另一端系一質(zhì)量為m的環(huán),環(huán)套在豎直固定的光滑直桿上A點,光滑定滑輪與直桿的距離為d.A點與定滑輪等高,B點在距A點正下方d處.現(xiàn)將環(huán)從A由靜止釋放,不計一切摩擦阻力,下列說法正確的是( )
A.環(huán)到達B時,重物上升的高度h=d
B.環(huán)從A到B,環(huán)減少的機械能等于重物增加
4、的機械能
C.環(huán)從A能下降的最大高度為d
D.當環(huán)下降時,輕繩的拉力T=2mg
解析:根據(jù)幾何關(guān)系有,環(huán)到達B時,重物上升的高度h=d-d,故A錯誤;環(huán)下滑過程中無摩擦力做功,故系統(tǒng)機械能守恒,即環(huán)減少的機械能等于重物增加的機械能,故B正確;設環(huán)下降到最大高度為H時,環(huán)和重物的速度均為零,此時重物上升的最大高度為:-d, 根據(jù)機械能守恒有:mgH=2mg(-d),解得:H=,故C正確;環(huán)向下運動,做非勻速運動,有加速度,所以重物向上運動,也有加速度,即環(huán)下降的時候,輕繩的拉力不可能是2mg,故D錯誤.
答案:BC
考點2 能量守恒定律
4.如圖所示是安裝在列車車廂之間的摩擦緩沖器結(jié)
5、構(gòu)圖.圖中①和②為楔塊,③和④為墊板,楔塊與彈簧盒、墊板間均有摩擦,在車廂相互撞擊使彈簧壓縮的過程中( )
A.緩沖器的機械能守恒
B.摩擦力做功消耗機械能
C.墊板的動能全部轉(zhuǎn)化為內(nèi)能
D.彈簧的彈性勢能全部轉(zhuǎn)化為動能
解析:由于系統(tǒng)內(nèi)存在摩擦力,在車廂撞擊壓縮彈簧的過程中需要克服摩擦力做功,機械能不守恒,墊板的動能一部分轉(zhuǎn)化為彈簧彈性勢能,另一部分轉(zhuǎn)化為內(nèi)能,A、C錯誤,B正確.彈簧恢復原長過程中,克服摩擦力做功,彈性勢能轉(zhuǎn)化為內(nèi)能和動能,D錯誤.
答案:B
5.(2018·泰州中學月考)如圖所示,在某豎直平面內(nèi),光滑曲面AB與水平面BC平滑連接于B點,BC右端連接內(nèi)壁
6、光滑、半徑r=0.2 m的四分之一細圓管CD,管口D端正下方直立一根勁度系數(shù)k=100 N/m的輕彈簧,彈簧一端固定,另一端恰好與管口D端平齊.一個質(zhì)量為1 kg的小球放在曲面AB上,現(xiàn)從距BC的高度h=0.6 m處靜止釋放小球,它與BC間的動摩擦因數(shù)μ=0.5,小球進入管口C端時,它對上管壁有FN=2.5mg的作用力,通過CD后,在壓縮彈簧過程中小球速度最大時彈簧的彈性勢能Ep=0.5 J.重力加速度g取10 m/s2.求:
(1)小球在C處受到的向心力大?。?
(2)在壓縮彈簧過程中小球的最大動能Ekm;
(3)小球最終停止的位置.
解析:(1)小球進入管口C端時,它與圓管上管壁
7、有大小為F=2.5mg的相互作用力,故對小球由牛頓第二定律有F+mg=Fn.
解得Fn=35 N.
(2)在壓縮彈簧過程中,速度最大時合力為零.
設此時小球離D端的距離為x0,則有kx0=mg,
解得x0==0.1 m.
在C點,有Fn=,
解得vC= m/s.
由能量守恒定律有mg(r+x0)=Ep+,
解得Ekm=mg(r+x0)+mv-Ep=6 J.
(3)小球從A點運動到C點過程,由動能定理得
mgh-μmgs=mv,
解得B、C間距離s=0.5 m.
小球與彈簧作用后返回C處動能不變,小球的動能最終消耗在與BC水平面相互作用的過程中.
設小球在BC上運動的總
8、路程為s′,由能量守恒定律有
μmgs′=mv,
解得s′=0.7 m.
故最終小球在BC上距離C為0.5 m-(0.7 m-0.5 m)=0.3 m(或距離B端為0.7 m-0.5 m=0.2 m)處停下.
答案:(1)35 N (2)6 J (3)停在BC上距離C端0.3 m處(或距離B端0.2 m處)
考點3 功能關(guān)系的應用
6.如圖所示,在豎直平面內(nèi)有一半徑為R的圓弧軌道,半徑OA水平、OB豎直,一個質(zhì)量為m的小球自A的正上方P點由靜止開始自由下落,小球沿軌道到達最高點B時恰好對軌道沒有壓力.已知AP=2R,重力加速度為g,則小球從P到B的運動過程中( )
A.重
9、力做功2mgR B.機械能減少mgR
C.合外力做功mgR D.克服摩擦力做功mgR
解析:小球由P到B的過程重力做功WG=mg(2R-R)=mgR,A錯誤;小球經(jīng)過B點時恰好對軌道沒有壓力,由牛頓第二定律可知mg=m,即小球在B點的速度v=;小球由P到B的過程,由動能定理可知合力做功W合=ΔEk=mv2=mgR,C錯誤;又因為W合=WG+Wf,所以小球由P到B的過程摩擦力做功Wf=W合-WG=-mgR,由功能關(guān)系知,物體的機械能將減少mgR,B錯誤,D正確.
答案:D
7.(多選)如圖甲所示,物體以一定的初速度從傾角α=37°的斜面底端沿斜面向上運動,上升的最大高度為3.0
10、m.選擇地面為參考平面,上升過程中物體的機械能E機隨高度h的變化如圖乙所示.取g=10 m/s2,sin 37°=0.60,cos 37°=0.80.則( )
A.物體的質(zhì)量m=1.0 kg
B.物體與斜面之間的動摩擦因數(shù)μ=0.80
C.物體上升過程中的加速度大小a=10 m/s2
D.物體回到斜面底端時的動能Ek=10 J
解析:物體上升到最高點時,E=Ep=mgh=30 J,得m=1.0 kg,物體損失的機械能ΔE損=μmgcos α·=20 J,得μ=0.50,A正確,B錯誤.物體上升過程中的加速度大小a=gsin α+μgcos α=10 m/s2,C正確.下降過程摩
11、擦生熱也應為20 J,故物體回到斜面底端時的動能Ek=50 J-40 J=10 J,D正確.
答案:ACD
8.(多選)(2018·衡水中學調(diào)研)如圖所示,光滑水平面上放著足夠長的木板B,木板B上放著木塊A,A、B間的接觸面粗糙,現(xiàn)在用一水平拉力F作用在A上,使其由靜止開始運動,則下列情況可能的是( )
A.拉力F做的功等于A、B系統(tǒng)動能的增加量
B.拉力F做的功大于A、B系統(tǒng)動能的增加量
C.拉力F和B對A做的功之和小于A的動能的增加量
D.A對B做的功等于B的動能的增加量
解析:若拉力F不夠大,A和B一起加速運動,對整體分析.由動能定理可知,拉力F做功等于A、B系統(tǒng)動能
12、的增加量.A正確.若拉力F足夠大,A與B有相對運動,對整體分析可知.F做功轉(zhuǎn)化為兩個物體的動能及系統(tǒng)的內(nèi)能,故F做的功大于A、B系統(tǒng)動能的增加量,B正確.由動能定理可知,拉力F和B對A做的功之和等于A的動能的增加量,C錯誤.根據(jù)動能定理可知,A對B做的功等于B的動能的增加量,D正確.
答案:ABD
9.如圖所示,傳送帶與水平面之間的夾角為θ=30°,其上A、B兩點間的距離為l=5 m,傳送帶在電動機的帶動下以v=1 m/s的速度勻速運動.現(xiàn)將一質(zhì)量為m=10 kg的小物體(可視為質(zhì)點)輕放在傳送帶上的A點,已知小物體與傳送帶之間的動摩擦因數(shù)μ=,在傳送帶將小物體從A點傳送到B點的過程中,求
13、:(g取10 m/s2)
(1)傳送帶對小物體做的功;
(2)電動機做的功.
解析:(1)小物體剛開始運動時,根據(jù)牛頓第二定律有μmgcos θ-mgsin θ=ma,
解得小物體上升的加速度為a==2.5 m/s2.
當小物體的速度為v=1 m/s時,小物體的位移為x==0.2 m<5 m,
之后小物體以v=1 m/s的速度勻速運動到B點,
由功能關(guān)系得W=ΔEk+ΔEp=mv2+mglsin θ=255 J.
(2)電動機做的功等于小物體的機械能的增加量和小物體與傳送帶間因摩擦產(chǎn)生的熱量Q之和,由v=at得
t==0.4 s,
相對位移x′=vt-t=0.2 m,
14、
摩擦產(chǎn)生的熱量Q=μmgx′cos θ=15 J,
故電動機做的功為W電=W+Q=270 J.
答案:(1)255 J (2)270 J
考點4 電磁場中的能量問題
10.(2018·安陽檢測)如圖所示,平行金屬導軌寬度為d,一部分軌道水平,左端接電阻R,傾斜部分與水平面成θ角,且置于垂直斜面向上的勻強磁場中,磁感應強度為B,現(xiàn)將一質(zhì)量為m、長度也為d的導體棒從導軌頂端由靜止釋放,直至滑到水平部分(導體棒下滑到水平部分之前已經(jīng)勻速,滑動過程中與導軌保持良好接觸,重力加速度為g).不計一切摩擦力,導體棒接入回路電阻為r,則整個下滑過程中( )
A.導體棒勻速運動時速度大小為
15、B.勻速運動時導體棒兩端電壓為
C.導體棒下滑距離為s時,通過R的總電荷量為
D.重力和安培力對導體棒所做的功大于導體棒獲得的動能
解析:導體棒下滑過程中受到沿斜面向下重力的分力和沿斜面向上的安培力,當勻速運動時,有mgsin θ=BId,根據(jù)歐姆定律可得I=,根據(jù)法拉第電磁感應定律可得E=Bdv,聯(lián)立解得v=sin θ,E=sin θ,故導體棒兩端的電壓U=R=sin θ,A正確,B錯誤.根據(jù)法拉第電磁感應定律E===,故q=IΔt=Δt=,根據(jù)動能定理可得重力和安培力對導體棒所做的功等于導體棒獲得的動能,C、D錯誤.
答案:A
11.如圖所示,絕緣斜面處在一個豎直向上的勻強電場中
16、,一帶電金屬塊由靜止開始沿斜面滑到底端.已知在金屬塊下滑的過程中動能增加0.3 J,重力做功1.5 J,電勢能增加0.5 J,則以下判斷正確的是( )
A.金屬塊帶負電荷
B.電場力做功0.5 J
C.金屬塊克服摩擦力做功0.8 J
D.金屬塊的機械能減少1.2 J
解析:金屬塊的電勢能增加,說明電場力做負功,則電場力方向豎直向上,所以金屬塊帶正電荷,選項A錯誤;克服電場力做多少功,電勢能就增加多少,故金屬塊克服電場力做功0.5 J,即電場力做功-0.5 J,選項B錯誤;根據(jù)動能定理可得WG+WE+WFf=ΔEk,解得WFf=-0.7 J,即金屬塊克服摩擦力做功0.7 J,選項C錯誤;重力做功1.5 J,金屬塊的重力勢能減少1.5 J,動能增加0.3 J,故機械能減少1.2 J,選項D正確.
答案:D