(浙江專(zhuān)版)2018-2019高中數(shù)學(xué) 第二章 圓錐曲線與方程 疑難規(guī)律方法學(xué)案 新人教A版選修2-1

上傳人:彩*** 文檔編號(hào):105733946 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):24 大小:686.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
(浙江專(zhuān)版)2018-2019高中數(shù)學(xué) 第二章 圓錐曲線與方程 疑難規(guī)律方法學(xué)案 新人教A版選修2-1_第1頁(yè)
第1頁(yè) / 共24頁(yè)
(浙江專(zhuān)版)2018-2019高中數(shù)學(xué) 第二章 圓錐曲線與方程 疑難規(guī)律方法學(xué)案 新人教A版選修2-1_第2頁(yè)
第2頁(yè) / 共24頁(yè)
(浙江專(zhuān)版)2018-2019高中數(shù)學(xué) 第二章 圓錐曲線與方程 疑難規(guī)律方法學(xué)案 新人教A版選修2-1_第3頁(yè)
第3頁(yè) / 共24頁(yè)

下載文檔到電腦,查找使用更方便

36 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(浙江專(zhuān)版)2018-2019高中數(shù)學(xué) 第二章 圓錐曲線與方程 疑難規(guī)律方法學(xué)案 新人教A版選修2-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專(zhuān)版)2018-2019高中數(shù)學(xué) 第二章 圓錐曲線與方程 疑難規(guī)律方法學(xué)案 新人教A版選修2-1(24頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第二章 圓錐曲線與方程 1 利用橢圓的定義解題 橢圓定義反映了橢圓的本質(zhì)特征,揭示了曲線存在的幾何性質(zhì).有些問(wèn)題,如果恰當(dāng)運(yùn)用定義來(lái)解決,可以起到事半功倍的效果,下面通過(guò)幾個(gè)例子進(jìn)行說(shuō)明. 1.求最值 例1 線段|AB|=4,|PA|+|PB|=6,M是AB的中點(diǎn),當(dāng)P點(diǎn)在同一平面內(nèi)運(yùn)動(dòng)時(shí),PM的長(zhǎng)度的最小值是(  ) A.2B.C.D.5 解析 由于|PA|+|PB|=6>4=|AB|,故由橢圓定義知P點(diǎn)的軌跡是以M為原點(diǎn),A,B為焦點(diǎn)的橢圓,且a=3,c=2,∴b==.于是PM的長(zhǎng)度的最小值是b=. 答案 C 2.求動(dòng)點(diǎn)坐標(biāo) 例2 橢圓+=1上到兩個(gè)焦點(diǎn)F1,

2、F2的距離之積最大的點(diǎn)的坐標(biāo)是________. 解析 設(shè)橢圓上的動(dòng)點(diǎn)為P,由橢圓的定義可知 |PF1|+|PF2|=2a=10, 所以|PF1|·|PF2|≤2=2=25, 當(dāng)且僅當(dāng)|PF1|=|PF2|時(shí)取等號(hào). 由解得|PF1|=|PF2|=5=a, 此時(shí)點(diǎn)P恰好是橢圓短軸的兩端點(diǎn), 即所求點(diǎn)的坐標(biāo)為(±3,0). 答案 (±3,0) 點(diǎn)評(píng) 由橢圓的定義可得“|PF1|+|PF2|=10”,即兩個(gè)正數(shù)|PF1|,|PF2|的和為定值,結(jié)合基本不等式可求|PF1|,|PF2|積的最大值,結(jié)合圖形可得所求點(diǎn)P的坐標(biāo). 3.求焦點(diǎn)三角形面積 例3 如圖所示,已

3、知橢圓的方程為+=1,若點(diǎn)P在第二象限,且∠PF1F2=120°,求△PF1F2的面積. 解 由已知,得a=2,b=, 所以c==1,|F1F2|=2c=2. 在△PF1F2中,由余弦定理,得 |PF2|2=|PF1|2+|F1F2|2-2|PF1|·|F1F2|·cos120°, 即|PF2|2=|PF1|2+4+2|PF1|,① 由橢圓定義,得|PF1|+|PF2|=4, 即|PF2|=4-|PF1|.② 將②代入①,得|PF1|=. 所以=|PF1|·|F1F2|·sin120° =××2×=, 即△PF1F2的面積是. 點(diǎn)評(píng) 在△PF1F2中,由橢圓的定義及

4、余弦定理可得關(guān)于|PF1|,|PF2|的方程組,消去|PF2|可求|PF1|. 從以上問(wèn)題,我們不難發(fā)現(xiàn),凡涉及橢圓上的點(diǎn)及橢圓焦點(diǎn)的問(wèn)題,我們應(yīng)首先考慮利用橢圓的定義求解. 2 如何求橢圓的離心率 1.由橢圓的定義求離心率 例1 以橢圓的焦距為直徑并過(guò)兩焦點(diǎn)的圓,交橢圓于4個(gè)不同的點(diǎn),順次連接這四個(gè)點(diǎn)和兩個(gè)焦點(diǎn)恰好組成一個(gè)正六邊形,那么這個(gè)橢圓的離心率為_(kāi)_______. 解析 如圖所示,設(shè)橢圓的方程為+=1(a>b>0),半焦距為c, 由題意知∠F1AF2=90°,∠AF2F1=60°.∴|AF2|=c, |AF1|=2c·sin60°=c. ∴|AF1|+|AF2

5、|=2a=(+1)c. ∴e===-1. 答案?。? 點(diǎn)評(píng) 本題利用了圓及正六邊形的幾何性質(zhì),并結(jié)合橢圓的定義,化難為易,使問(wèn)題簡(jiǎn)單解決. 2.解方程(組)求離心率 例2 橢圓+=1(a>b>0)的左焦點(diǎn)為F1(-c,0),A(-a,0),B(0,b)是兩個(gè)頂點(diǎn),如果F1到直線AB的距離為,則橢圓的離心率e=________. 解析 如圖所示, 直線AB的方程為+=1, 即bx-ay+ab=0. ∵點(diǎn)F1(-c,0)到直線AB的距離為,∴=, ∴|a-c|=,即7a2-14ac+7c2=a2+b2. 又∵b2=a2-c2,整理得5a2-14ac+8c2=0. 兩邊同

6、除以a2并由e=知,8e2-14e+5=0, 解得e=或e=(舍去). 答案  3.利用數(shù)形結(jié)合求離心率 例3 在平面直角坐標(biāo)系中,已知橢圓+=1(a>b>0),圓O的半徑為a,過(guò)點(diǎn)P作圓O的兩條切線,且這兩條切線互相垂直,則離心率e=________. 解析 如圖所示,切線PA,PB互相垂直,|PA|=|PB|. 又OA⊥PA,OB⊥PB,|OA|=|OB|, 則四邊形OAPB是正方形, 故|OP|=|OA|, 即=a,∴e==. 答案  4.綜合類(lèi) 例4 設(shè)M為橢圓+=1上一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn),如果∠MF1F2=75°,∠MF2F1=15°,求橢圓

7、的離心率. 解 由正弦定理得== ==, ∴e====. 點(diǎn)評(píng) 此題可推廣為若∠MF1F2=α,∠MF2F1=β,則橢圓的離心率e=. 3 活用雙曲線定義妙解題 在解雙曲線中的有關(guān)求動(dòng)點(diǎn)軌跡、離心率、最值等問(wèn)題時(shí),若能靈活應(yīng)用雙曲線的定義,能把大題化為小題,起到事半功倍的作用.下面舉例說(shuō)明. 1.求動(dòng)點(diǎn)軌跡 例1 一動(dòng)圓C與兩定圓C1:x2+(y-5)2=1和圓C2:x2+(y+5)2=16都外切,求動(dòng)圓圓心C的軌跡方程. 解 設(shè)動(dòng)圓圓心為C(x,y),半徑為r, 因?yàn)閯?dòng)圓C與兩定圓相外切, 所以 即|CC2|-|CC1|=3<|C1C2|=10, 所以點(diǎn)C的軌跡

8、是以C1(0,5),C2(0,-5)為焦點(diǎn)的雙曲線的上支,且a=,c=5, 所以b2=. 故動(dòng)圓圓心C的軌跡方程為-=1(y≥). 點(diǎn)評(píng) 依據(jù)動(dòng)圓與兩定圓外切建立關(guān)系式,易得到|CC2|-|CC1|=3<|C1C2|,從而判斷出C的軌跡是雙曲線的一支,最后求出a,b即可寫(xiě)出軌跡方程,這里一定要注意所求的軌跡是雙曲線的一支還是兩支. 2.求焦點(diǎn)三角形的周長(zhǎng) 例2 過(guò)雙曲線-=1左焦點(diǎn)F1的直線與左支交于A,B兩點(diǎn),且弦AB長(zhǎng)為6,則△ABF2(F2為右焦點(diǎn))的周長(zhǎng)是________. 解析 由雙曲線的定義知|AF2|-|AF1|=8,|BF2|-|BF1|=8, 兩式相加得|AF2

9、|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=16, 從而有|AF2|+|BF2|=16+6=22, 所以△ABF2的周長(zhǎng)為|AF2|+|BF2|+|AB|=22+6=28. 答案 28 點(diǎn)評(píng) 與焦點(diǎn)有關(guān)的三角形周長(zhǎng)問(wèn)題,常借助雙曲線的定義解決,注意解決問(wèn)題時(shí)的拼湊技巧. 3.最值問(wèn)題 例3 已知F是雙曲線-y2=1的右焦點(diǎn),P是雙曲線右支上一動(dòng)點(diǎn),定點(diǎn)M(4,2),求|PM|+|PF|的最小值. 解 設(shè)雙曲線的左焦點(diǎn)為F′, 則F′(-2,0), 由雙曲線的定義知:|PF′|-|PF|=2a=2, 所以|PF|=|PF′|-2, 所以|P

10、M|+|PF|=|PM|+|PF′|-2, 要使|PM|+|PF|取得最小值,只需|PM|+|PF′|取得最小值,由圖可知,當(dāng)P,F(xiàn)′,M三點(diǎn)共線時(shí),|PM|+|PF′|最小,此時(shí)|MF′|=2, 故|PM|+|PF|的最小值為2-2. 點(diǎn)評(píng) 本題利用雙曲線的定義對(duì)F的位置進(jìn)行轉(zhuǎn)換,然后再根據(jù)共線易求得最小值.另外同學(xué)們不妨思考一下:(1)若將M坐標(biāo)改為M(1,1),其他條件不變,如何求解呢?(2)若P是雙曲線左支上一動(dòng)點(diǎn),如何求解呢? 4.求離心率范圍 例4 已知雙曲線-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,試求該雙曲

11、線離心率的取值范圍. 解 因?yàn)閨PF1|=4|PF2|,點(diǎn)P在雙曲線的右支上, 所以設(shè)|PF2|=m,則|PF1|=4m, 由雙曲線的定義,則|PF1|-|PF2|=4m-m=2a, 所以m=a. 又|PF1|+|PF2|≥|F1F2|, 即4m+m≥2c, 所以m≥c,即a≥c, 所以e=≤. 又e>1,所以雙曲線離心率的取值范圍為10)過(guò)焦點(diǎn)F的一條弦.設(shè)A

12、(xA,yA),B(xB,yB),AB的中點(diǎn)M(x0,y0),過(guò)A,M,B分別向拋物線的準(zhǔn)線l作垂線,垂足分別為A1,M1,B1,則有以下重要結(jié)論: (1)以AB為直徑的圓必與準(zhǔn)線相切; (2)|AB|=2(焦點(diǎn)弦長(zhǎng)與中點(diǎn)坐標(biāo)的關(guān)系); (3)|AB|=x1+x2+p; (4)A,B兩點(diǎn)的橫坐標(biāo)之積,縱坐標(biāo)之積為定值,即x1x2=,y1y2=-p2; (5)A1F⊥B1F; (6)A,O,B1三點(diǎn)共線; (7)+=. 以下以第(7)條結(jié)論為例證明: 證明 當(dāng)直線AB的斜率不存在, 即與x軸垂直時(shí),|FA|=|FB|=p, ∴+=+=. 當(dāng)直線AB的斜率存在時(shí),設(shè)直線

13、AB的方程為 y=k,并代入y2=2px, ∴2=2px, 即k2x2-p(2+k2)x+=0. 由A(xA,yA),B(xB,yB), 則xA+xB=,xAxB=. ∵|FA|=xA+,|FB|=xB+, ∴|FA|+|FB|=xA+xB+p, |FA|·|FB|= =xAxB+(xA+xB)+=(xA+xB+p). ∴|FA|+|FB|=|FA|·|FB|·, 即+=. 點(diǎn)評(píng) 該結(jié)論是拋物線過(guò)焦點(diǎn)的弦所具有的一個(gè)重要性質(zhì),解題時(shí),不可忽視AB⊥x軸的情況. 例2 設(shè)F為拋物線y2=4x的焦點(diǎn),A,B,C為該拋物線上三點(diǎn),若++=0,則 ||+||+||=____

14、____. 解析 設(shè)A(x1,y1),B(x2,y2),C(x3,y3),又F(1,0). 由++=0知(x1-1)+(x2-1)+(x3-1)=0, 即x1+x2+x3=3, ||+||+||=x1+x2+x3+p=6. 答案 6 5 求曲線方程的常用方法 曲線方程的求法是解析幾何的重要內(nèi)容和高考的??键c(diǎn).求曲線方程時(shí),應(yīng)根據(jù)曲線的不同背景,不同的結(jié)構(gòu)特征,選用不同的思路和方法,才能簡(jiǎn)捷明快地解決問(wèn)題.下面對(duì)其求法進(jìn)行探究. 1.定義法 求曲線方程時(shí),如果動(dòng)點(diǎn)軌跡滿足已知曲線的定義,則可根據(jù)題設(shè)條件和圖形的特點(diǎn),恰當(dāng)運(yùn)用平面幾何的知識(shí)去尋求其數(shù)量關(guān)系,再由曲線定義直接寫(xiě)

15、出方程,這種方法叫做定義法. 例1 如圖,點(diǎn)A為圓形紙片內(nèi)不同于圓心C的定點(diǎn),動(dòng)點(diǎn)M在圓周上,將紙片折起,使點(diǎn)M與點(diǎn)A重合,設(shè)折痕m交線段CM于點(diǎn)N.現(xiàn)將圓形紙片放在平面直角坐標(biāo)系xOy中,設(shè)圓C:(x+1)2+y2=4a2 (a>1),A(1,0),記點(diǎn)N的軌跡為曲線E. (1)證明曲線E是橢圓,并寫(xiě)出當(dāng)a=2時(shí)該橢圓的標(biāo)準(zhǔn)方程; (2)設(shè)直線l過(guò)點(diǎn)C和橢圓E的上頂點(diǎn)B,點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為點(diǎn)Q,若橢圓E的離心率e∈,求點(diǎn)Q的縱坐標(biāo)的取值范圍. 解 (1)依題意,直線m為線段AM的垂直平分線, ∴|NA|=|NM|. ∴|NC|+|NA|=|NC|+|NM|=|CM|=2

16、a>2, ∴N的軌跡是以C,A為焦點(diǎn),長(zhǎng)軸長(zhǎng)為2a,焦距為2的橢圓. 當(dāng)a=2時(shí),長(zhǎng)軸長(zhǎng)為2a=4,焦距為2c=2, ∴b2=a2-c2=3. ∴橢圓的標(biāo)準(zhǔn)方程為+=1. (2)設(shè)橢圓的標(biāo)準(zhǔn)方程為+=1(a>b>0). 由(1)知:a2-b2=1.又C(-1,0),B(0,b), ∴直線l的方程為+=1,即bx-y+b=0. 設(shè)Q(x,y),∵點(diǎn)Q與點(diǎn)A(1,0)關(guān)于直線l對(duì)稱(chēng), ∴ 消去x得y=. ∵離心率e∈,∴≤e2≤, 即≤≤,∴≤a2≤4. ∴≤b2+1≤4,即≤b≤, ∵y==≤2,當(dāng)且僅當(dāng)b=1時(shí)取等號(hào). 又當(dāng)b=時(shí),y=;當(dāng)b=時(shí),y=.∴≤y≤2.

17、 ∴點(diǎn)Q的縱坐標(biāo)的取值范圍是[,2]. 2.直接法 若題設(shè)條件有明顯的等量關(guān)系,或者可運(yùn)用平面幾何的知識(shí)推導(dǎo)出等量關(guān)系,則可通過(guò)“建系、設(shè)點(diǎn)、列式、化簡(jiǎn)、檢驗(yàn)”五個(gè)步驟直接求出動(dòng)點(diǎn)的軌跡方程,這種“五步法”可稱(chēng)為直接法. 例2 已知直線l1:2x-3y+2=0,l2:3x-2y+3=0.有一動(dòng)圓M(圓心和半徑都在變動(dòng))與l1,l2都相交,并且l1,l2被截在圓內(nèi)的兩條線段的長(zhǎng)度分別是定值26,24.求圓心M的軌跡方程. 解 如圖,設(shè)M(x,y),圓半徑為r,M到l1,l2的距離分別是d1,d2, 則d+132=r2,d+122=r2, ∴d-d=25, 即2-2=25,化簡(jiǎn)得圓

18、心M的軌跡方程是(x+1)2-y2=65. 點(diǎn)評(píng) 若動(dòng)點(diǎn)運(yùn)動(dòng)的規(guī)律是一些幾何量的等量關(guān)系,則常用直接法求解,即將這些關(guān)系直接轉(zhuǎn)化成含有動(dòng)點(diǎn)坐標(biāo)x,y的方程即可. 3.待定系數(shù)法 若已知曲線(軌跡)的形狀,求曲線(軌跡)的方程時(shí),可由待定系數(shù)法求解. 例3 已知橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,O為坐標(biāo)原點(diǎn),F(xiàn)是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn),若橢圓的長(zhǎng)軸長(zhǎng)是6,且cos∠OFA=,求橢圓的方程. 解 橢圓的長(zhǎng)軸長(zhǎng)為6,cos∠OFA=, 所以點(diǎn)A不是長(zhǎng)軸的頂點(diǎn),是短軸的頂點(diǎn), 所以|OF|=c,|AF|== =a=3,=,所以c=2,b2=32-22=5, 故橢圓的方程為+=1或+=1. 4.

19、相關(guān)點(diǎn)法(或代入法) 如果點(diǎn)P的運(yùn)動(dòng)軌跡或所在的曲線已知,又點(diǎn)P與點(diǎn)Q的坐標(biāo)之間可以建立某種關(guān)系,借助于點(diǎn)P的運(yùn)動(dòng)軌跡便可得到點(diǎn)Q的運(yùn)動(dòng)軌跡. 例4 如圖所示,從雙曲線x2-y2=1上一點(diǎn)Q引直線l:x+y=2的垂線,垂足為N,求線段QN的中點(diǎn)P的軌跡方程. 分析 設(shè)P(x,y),因?yàn)镻是QN的中點(diǎn),為此需用P點(diǎn)的坐標(biāo)表示Q點(diǎn)的坐標(biāo),然后代入雙曲線方程即可. 解 設(shè)P點(diǎn)坐標(biāo)為(x,y),雙曲線上點(diǎn)Q的坐標(biāo)為(x0,y0), ∵點(diǎn)P是線段QN的中點(diǎn), ∴N點(diǎn)的坐標(biāo)為(2x-x0,2y-y0). 又點(diǎn)N在直線x+y=2上,∴2x-x0+2y-y0=2, 即x0+y0=2x+2y

20、-2.① 又QN⊥l,∴kQN==1, 即x0-y0=x-y.② 由①②,得x0=(3x+y-2),y0=(x+3y-2). 又∵點(diǎn)Q在雙曲線上, ∴(3x+y-2)2-(x+3y-2)2=1. 化簡(jiǎn),得2-2=. ∴線段QN的中點(diǎn)P的軌跡方程為 2-2=. 點(diǎn)評(píng) 本題中動(dòng)點(diǎn)P與點(diǎn)Q相關(guān),而Q點(diǎn)的軌跡確定,所以解決這類(lèi)問(wèn)題的關(guān)鍵是找出P,Q兩點(diǎn)坐標(biāo)間的關(guān)系,用相關(guān)點(diǎn)法求解. 5.參數(shù)法 有時(shí)求動(dòng)點(diǎn)滿足的幾何條件不易得出,也無(wú)明顯的相關(guān)點(diǎn),但卻較易發(fā)現(xiàn)(或經(jīng)分析可發(fā)現(xiàn))這個(gè)動(dòng)點(diǎn)的運(yùn)動(dòng)常常受到另一個(gè)變量(角度、斜率、比值、截距或時(shí)間等)的制約,即動(dòng)點(diǎn)的坐標(biāo)(x,y)中的x,y

21、分別隨另一個(gè)變量的變化而變化,我們可以設(shè)這個(gè)變量為參數(shù),建立軌跡的參數(shù)方程,這種方法叫做參數(shù)法. 例5 已知點(diǎn)P在直線x=2上移動(dòng),直線l通過(guò)原點(diǎn)且與OP垂直,通過(guò)點(diǎn)A(1,0)及點(diǎn)P的直線m和直線l交于點(diǎn)Q,求點(diǎn)Q的軌跡方程. 解 如圖,設(shè)OP的斜率為k, 則P(2,2k).當(dāng)k≠0時(shí), 直線l的方程:y=-x;① 直線m的方程:y=2k(x-1).② 聯(lián)立①②消去k得2x2+y2-2x=0 (x≠1). 當(dāng)k=0時(shí),點(diǎn)Q的坐標(biāo)(0,0)也滿足上式,故點(diǎn)Q的軌跡方程為2x2+y2-2x=0(x≠1). 6 解析幾何中的定值與最值問(wèn)題 1.定點(diǎn)、定值問(wèn)題 對(duì)于解析幾

22、何中的定點(diǎn)、定值問(wèn)題,要善于運(yùn)用辯證的觀點(diǎn)去思考分析,在動(dòng)點(diǎn)的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開(kāi)神秘的面紗,這樣可將盲目的探索問(wèn)題轉(zhuǎn)化為有方向有目標(biāo)的一般性證明題,從而找到解決問(wèn)題的突破口. 例1 已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過(guò)橢圓右焦點(diǎn)的直線交橢圓于A,B兩點(diǎn),+與a=(3,-1)共線.設(shè)M為橢圓上任意一點(diǎn),且=λ+μ (λ,μ∈R),求證:λ2+μ2為定值. 證明 ∵M(jìn)是橢圓上任意一點(diǎn),若M與A重合, 則=,此時(shí)λ=1,μ=0, ∴λ2+μ2=1,現(xiàn)在需要證明λ2+μ2為定值1. 設(shè)橢圓方程為+=1

23、(a>b>0),A(x1,y1),B(x2,y2),AB的中點(diǎn)為N(x0,y0), ∴ ①-②得+=0, 即=-=-, 又∵kAB==1,∴y0=-x0. ∴直線ON的方向向量為=, ∵∥a,∴=. ∵a2=3b2,∴橢圓方程為x2+3y2=3b2, 又直線方程為y=x-c. 聯(lián)立得4x2-6cx+3c2-3b2=0. ∵x1+x2=c,x1x2==c2. 又設(shè)M(x,y),則由=λ+μ, 得代入橢圓方程整理得 λ2(x+3y)+μ2(x+3y)+2λμ(x1x2+3y1y2)=3b2. 又∵x+3y=3b2,x+3y=3b2, x1x2+3y1y2=4x1x2-

24、3c(x1+x2)+3c2 =c2-c2+3c2=0, ∴λ2+μ2=1,故λ2+μ2為定值. 例2 已知橢圓+=1(a>b>0)過(guò)點(diǎn)(0,1),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.直線l與x軸正半軸和y軸分別交于Q,P,與橢圓分別交于點(diǎn)M,N,各點(diǎn)均不重合且滿足=λ1,=λ2. (1)求橢圓的標(biāo)準(zhǔn)方程; (2)若λ1+λ2=-3,試證明:直線l過(guò)定點(diǎn)并求此定點(diǎn). 解 (1)設(shè)橢圓的焦距為2c, 由題意知b=1,且(2a)2+(2b)2=2(2c)2, 又a2=b2+c2,∴a2=3.∴橢圓的方程為+y2=1. (2)由題意設(shè)P(0,m),Q(x0,0),M(x1,y

25、1),N(x2,y2), 設(shè)l方程為x=t(y-m), 由=λ1知(x1,y1-m)=λ1(x0-x1,-y1), ∴y1-m=-y1λ1,由題意y1≠0,∴λ1=-1. 同理由=λ2知λ2=-1. ∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0,① 聯(lián)立得(t2+3)y2-2mt2y+t2m2-3=0, ∴由題意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,② 且有y1+y2=,y1y2=,③ ③代入①得t2m2-3+2m2t2=0,∴(mt)2=1, 由題意mt<0,∴mt=-1,滿足②, 得l方程為x=ty+1,過(guò)定點(diǎn)(1,0),即Q為定點(diǎn). 2.最

26、值問(wèn)題 解決圓錐曲線中的最值問(wèn)題,一般有兩種方法:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)解非常巧妙;二是代數(shù)法,將圓錐曲線中的最值問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題(即根據(jù)條件列出所求的目標(biāo)函數(shù)),然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角有界法、函數(shù)單調(diào)法及基本不等式法等,求解最大或最小值. 例3 已知F是雙曲線-=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動(dòng)點(diǎn),則|PF|+|PA|的最小值為_(kāi)_______. 解析 設(shè)右焦點(diǎn)為F′,由題意可知F′坐標(biāo)為(4,0),根據(jù)雙曲線的定義,|PF|-|PF′|=4,∴|PF|+|PA|=4+|PF′|+|PA|,∴要使|PF|+

27、|PA|最小,只需|PF′|+|PA|最小即可,|PF′|+|PA|最小需P,F(xiàn)′,A三點(diǎn)共線,最小值即4+|F′A|=4+=4+5=9. 答案 9 點(diǎn)評(píng) “化曲為直”求與距離有關(guān)的最值是平面幾何中一種巧妙的方法,特別是涉及圓錐曲線上動(dòng)點(diǎn)與定點(diǎn)和焦點(diǎn)距離之和的最值問(wèn)題常用此法. 例4 已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求·的最小值. 解 設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y), 由題意有-|x|=1. 化簡(jiǎn)得y2=2x+2|x|. 當(dāng)x≥0時(shí),y2=4

28、x;當(dāng)x<0時(shí),y=0. 所以,動(dòng)點(diǎn)P的軌跡C的方程為y2=4x(x≥0)和y=0 (x<0). 如圖,由題意知,直線l1的斜率存在且不為0,設(shè)為k,則l1的方程為y=k(x-1). 由 得k2x2-(2k2+4)x+k2=0. 設(shè)A(x1,y1),B(x2,y2), 則x1,x2是上述方程的兩個(gè)實(shí)根, 于是x1+x2=2+,x1x2=1,Δ=(2k2+4)2-4k4>0. 因?yàn)閘1⊥l2,所以l2的斜率為-. 設(shè)D(x3,y3),E(x4,y4), 則同理可得x3+x4=2+4k2,x3x4=1. 故·=(+)·(+) =·+·+·+· =||·||+||·||

29、 =(x1+1)(x2+1)+(x3+1)(x4+1) =x1x2+(x1+x2)+1+x3x4+(x3+x4)+1 =1++1+1+(2+4k2)+1 =8+4≥8+4×2=16. 當(dāng)且僅當(dāng)k2=, 即k=±1時(shí),·取得最小值16. 7 圓錐曲線中存在探索型問(wèn)題 存在探索型問(wèn)題作為探索性問(wèn)題之一,具備了內(nèi)容涉及面廣、重點(diǎn)題型豐富等命題要求,方便考查分析、比較、猜測(cè)、歸納等綜合能力,因而受到命題人的喜愛(ài).圓錐曲線存在探索型問(wèn)題是指在給定題設(shè)條件下是否存在某個(gè)數(shù)學(xué)對(duì)象(數(shù)值、性質(zhì)、圖形)使某個(gè)數(shù)學(xué)結(jié)論成立的數(shù)學(xué)問(wèn)題.本節(jié)僅就圓錐曲線中的存在探索型問(wèn)題展開(kāi),幫助復(fù)習(xí). 1.常

30、數(shù)存在型問(wèn)題 例1 直線y=ax+1與雙曲線3x2-y2=1相交于A,B兩點(diǎn),是否存在這樣的實(shí)數(shù)a,使A,B關(guān)于直線y=2x對(duì)稱(chēng)?請(qǐng)說(shuō)明理由. 分析 先假設(shè)實(shí)數(shù)a存在,然后根據(jù)推理或計(jì)算求出滿足題意的結(jié)果,或得到與假設(shè)相矛盾的結(jié)果,從而否定假設(shè),得出某數(shù)學(xué)對(duì)象不存在的結(jié)論. 解 設(shè)存在實(shí)數(shù)a,使A,B關(guān)于直線l:y=2x對(duì)稱(chēng),并設(shè) A(x1,y1),B(x2,y2),則AB中點(diǎn)坐標(biāo)為. 依題設(shè)有=2·,即y1+y2=2(x1+x2),① 又A,B在直線y=ax+1上,∴y1=ax1+1,y2=ax2+1, ∴y1+y2=a(x1+x2)+2,② 由①②,得2(x1+x2)=a(

31、x1+x2)+2, 即(2-a)(x1+x2)=2,③ 聯(lián)立得(3-a2)x2-2ax-2=0, ∴x1+x2=,④ 把④代入③,得(2-a)·=2, 解得a=,經(jīng)檢驗(yàn)知滿足Δ=4a2+8(3-a2)>0, ∴kAB=,而kl=2, ∴kAB·kl=×2=3≠-1. 故不存在滿足題意的實(shí)數(shù)a. 2.點(diǎn)存在型問(wèn)題 例2 在平面直角坐標(biāo)系中,已知圓心在第二象限,半徑為2的圓與直線y=x相切于原點(diǎn)O,橢圓+=1與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10. (1)求圓C的方程; (2)試探究圓C上是否存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓右焦點(diǎn)F的距離等于線段OF的長(zhǎng).若存在,請(qǐng)求出

32、點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由. 分析 假設(shè)滿足條件的點(diǎn)Q存在,根據(jù)其滿足的幾何性質(zhì),求出Q的坐標(biāo),則點(diǎn)Q存在,若求不出Q的坐標(biāo),則點(diǎn)Q就不存在. 解 (1)由題意知圓心在y=-x上, 設(shè)圓心的坐標(biāo)是(-p,p)(p>0), 則圓的方程可設(shè)為(x+p)2+(y-p)2=8, 由于O(0,0)在圓上,∴p2+p2=8,解得p=2, ∴圓C的方程為(x+2)2+(y-2)2=8. (2)橢圓+=1與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10,由橢圓的定義知2a=10,a=5, ∴橢圓右焦點(diǎn)為F(4,0). 假設(shè)存在異于原點(diǎn)的點(diǎn)Q(m,n)使|QF|=|OF|, 則有且m2+n

33、2≠0, 解得故圓C上存在滿足條件的點(diǎn)Q. 3.直線存在型問(wèn)題 例3 試問(wèn)是否能找到一條斜率為k(k≠0)的直線l與橢圓+y2=1交于兩個(gè)不同的點(diǎn)M,N,且使M,N到點(diǎn)A(0,1)的距離相等,若存在,試求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由. 分析 假設(shè)滿足條件的直線l存在,由平面解析幾何的相關(guān)知識(shí)求解. 解 設(shè)直線l:y=kx+m為滿足條件的直線,再設(shè)P為MN的中點(diǎn),欲滿足條件,只需AP⊥MN即可. 由得(1+3k2)x2+6mkx+3m2-3=0. 設(shè)M(x1,y1),N(x2,y2), 則xP==-, yP=kxP+m=, ∴kAP=. ∵AP⊥MN, ∴=-(k

34、≠0),故m=-. 由Δ=36m2k2-4(1+3k2)(3m2-3) =9(1+3k2)(1-k2)>0,得-1

35、任意一點(diǎn)的坐標(biāo)所滿足的方程,并檢驗(yàn)以方程的解為坐標(biāo)的點(diǎn)是否都是軌跡上的點(diǎn),因此,應(yīng)設(shè)軌跡上任意一點(diǎn)的坐標(biāo)為(x,y).上述解法是因?yàn)閯?dòng)點(diǎn)坐標(biāo)設(shè)的不對(duì),即運(yùn)用方法不當(dāng)而導(dǎo)致錯(cuò)誤. 正解 設(shè)中點(diǎn)P(x,y),A(0,m),B(n,0), 則m2+n2=a2,x=,y=, 于是所求軌跡方程為x2+y2=a2. 2.忽視定義中的條件而致誤 例2 平面內(nèi)一點(diǎn)M到兩定點(diǎn)F1(0,-4),F(xiàn)2(0,4)的距離之和為8,則點(diǎn)M的軌跡為(  ) A.橢圓B.圓C.直線D.線段 錯(cuò)解 根據(jù)橢圓的定義,點(diǎn)M的軌跡為橢圓,故選A. 錯(cuò)因分析 在橢圓的定義中,點(diǎn)M到兩定點(diǎn)F1,F(xiàn)2的距離之和必須大于

36、兩定點(diǎn)的距離,即|MF1|+|MF2|>|F1F2|,亦即2a>2c.而本題中|MF1|+|MF2|=|F1F2|,所以點(diǎn)M的軌跡不是橢圓,而是線段F1F2. 正解 因?yàn)辄c(diǎn)M到兩定點(diǎn)F1,F(xiàn)2的距離之和為|F1F2|,所以點(diǎn)M的軌跡是線段F1F2. 答案 D 3.忽視標(biāo)準(zhǔn)方程的特征而致誤 例3 設(shè)拋物線y=mx2 (m≠0)的準(zhǔn)線與直線y=1的距離為3,求拋物線的標(biāo)準(zhǔn)方程. 錯(cuò)解 拋物線y=mx2 (m≠0)的準(zhǔn)線方程為y=-. 又與直線y=1的距離為3的直線為y=-2或y=4. 故-=-2或-=4.∴m=8或m=-16. 所以拋物線的標(biāo)準(zhǔn)方程為y=8x2或y=-16x2.

37、 錯(cuò)因分析 錯(cuò)解忽視了拋物線標(biāo)準(zhǔn)方程中的系數(shù),應(yīng)位于一次項(xiàng)前這個(gè)特征,故本題應(yīng)先化為x2=y(tǒng)的形式,再求解. 正解 由于y=mx2 (m≠0)可化為x2=y(tǒng), 其準(zhǔn)線方程為y=-.由題意知-=-2或-=4,解得m=或m=-. 則所求拋物線的標(biāo)準(zhǔn)方程為x2=8y或x2=-16y. 4.涉及弦長(zhǎng)問(wèn)題時(shí),忽視判別式Δ>0這一隱含條件而致誤 例4 正方形ABCD的A,B兩點(diǎn)在拋物線y=x2上,另兩點(diǎn)C,D在直線y=x-4上,求正方形的邊長(zhǎng). 錯(cuò)解 ∵AB與直線y=x-4平行,∴設(shè)AB的直線方程為y=x+b,A(x1,x),B(x2,x), 則由消去y,得x2-x-b=0, |AB

38、|2=(1+k2)[(x1+x2)2-4x1x2]=2(1+4b). ∵AB與直線y=x-4間的距離為d=, ∴2(1+4b)=,即b2-8b+12=0, 解得b=2或b=6,∴|AB|=3或|AB|=5. 錯(cuò)因分析 在考慮直線AB與拋物線相交時(shí),必須有方程x2-x-b=0的判別式Δ>0,以此來(lái)限制b的取舍. 正解 ∵AB與直線y=x-4平行,∴設(shè)AB的直線方程為y=x+b,A(x1,x),B(x2,x), 則由消去y,得x2-x-b=0, |AB|2=(1+k2)[(x1+x2)2-4x1x2]=2(1+4b). ∵AB與直線y=x-4間的距離為d=, ∴2(1+4b)

39、=,即b2-8b+12=0, 解得b=2或b=6,∵Δ=1+4b>0,∴b>-. ∴b=2或b=6都滿足Δ>0,∴b=2或b=6. ∴|AB|=3或|AB|=5. 5.求解拋物線標(biāo)準(zhǔn)方程時(shí),忽略對(duì)焦點(diǎn)位置討論致誤 例5 拋物線的焦點(diǎn)F在x軸上,點(diǎn)A(m,-3)在拋物線上,且|AF|=5,求拋物線的標(biāo)準(zhǔn)方程. 錯(cuò)解一 因?yàn)閽佄锞€的焦點(diǎn)F在x軸上,且點(diǎn)A(m,-3)在拋物線上, 所以拋物線方程可設(shè)為y2=2px(p>0). 設(shè)點(diǎn)A到準(zhǔn)線的距離為d,則d=|AF|=+m, 所以 解得或 所以拋物線方程為y2=2x或y2=18x. 錯(cuò)解二 因?yàn)閽佄锞€的焦點(diǎn)F在x軸上,且點(diǎn)A(m

40、,-3)在拋物線上, 所以當(dāng)m>0時(shí),點(diǎn)A在第四象限,拋物線方程可設(shè)為 y2=2px(p>0). 設(shè)點(diǎn)A到準(zhǔn)線的距離為d,則d=|AF|=+m, 所以解得或 所以拋物線方程為y2=2x或y2=18x. 當(dāng)m<0時(shí),點(diǎn)A在第三象限, 拋物線方程可設(shè)為y2=-2px(p>0), 設(shè)點(diǎn)A到準(zhǔn)線的距離為d,則d=|AF|=+m, 所以 解得或(舍去). 所以拋物線方程為y2=-2(5+)x. 綜上所述,拋物線方程為y2=-2(5+)x或y2=2x或y2=18x. 正解 因?yàn)閽佄锞€的焦點(diǎn)F在x軸上,且點(diǎn)A(m,-3)在拋物線上, 所以當(dāng)m>0時(shí),點(diǎn)A在第四象限,拋物線方程

41、可設(shè)為y2=2px(p>0),設(shè)點(diǎn)A到準(zhǔn)線的距離為d, 則d=|AF|=+m,所以 解得或 所以拋物線方程為y2=2x或y2=18x. 當(dāng)m<0時(shí),點(diǎn)A在第三象限,拋物線的方程可設(shè)為y2=-2px(p>0), 設(shè)A到準(zhǔn)線的距離為d,則d=|AF|=-m, 所以解得或 所以拋物線方程為y2=-2x或y2=-18x. 綜上所述,拋物線方程為y2=-2x或y2=-18x或y2=2x或y2=18x. 9 圓錐曲線中的數(shù)學(xué)思想方法 1.方程思想 方程思想就是分析數(shù)學(xué)問(wèn)題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過(guò)解方程或解方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問(wèn)題,

42、使問(wèn)題獲得解決.本章中,方程思想的應(yīng)用最為廣泛. 例1 已知直線y=-x+2和橢圓+=1(a>b>0)相交于A,B兩點(diǎn),且a=2b,若|AB|=2,求橢圓的方程. 解 由消去y并整理得x2-4x+8-2b2=0. 設(shè)A(x1,y1),B(x2,y2), 則由根與系數(shù)的關(guān)系得x1+x2=4,x1x2=8-2b2,Δ=16-4(8-2b2)>0. ∵|AB|=2,∴·=2, 即·=2, 解得b2=4,故a2=4b2=16.∴所求橢圓的方程為+=1. 2.函數(shù)思想 很多與圓錐曲線有關(guān)的問(wèn)題中的各個(gè)數(shù)量在運(yùn)動(dòng)變化時(shí),都是相互聯(lián)系、相互制約的,它們之間構(gòu)成函數(shù)關(guān)系.這類(lèi)問(wèn)題若用函數(shù)思想

43、來(lái)分析、尋找解題思路,會(huì)有很好的效果.一些最值問(wèn)題常用函數(shù)思想,運(yùn)用根與系數(shù)的關(guān)系求弦的中點(diǎn)和弦長(zhǎng)問(wèn)題,是經(jīng)常使用的方法. 例2 若點(diǎn)(x,y)在+=1(b>0)上運(yùn)動(dòng),求x2+2y的最大值. 解 ∵+=1(b>0),∴x2=4≥0, 即-b≤y≤b,∴x2+2y=4+2y =-+2y+4=-2+4+. 當(dāng)≤b,即0b,即b>4時(shí),若y=b,則x2+2y取得最大值,其最大值為2b. 綜上所述,x2+2y的最大值為 3.轉(zhuǎn)化和化歸思想 在解決圓錐曲線的綜合問(wèn)題時(shí),經(jīng)常利用轉(zhuǎn)化和化歸思想.轉(zhuǎn)化題中的已知條件和所求,真正

44、化歸為直線和圓錐曲線的基本問(wèn)題.這里的轉(zhuǎn)化和化歸非常關(guān)鍵,沒(méi)有轉(zhuǎn)化和化歸,就很難找到解決問(wèn)題的途徑和方法. 例3 如圖所示,已知橢圓+=1,直線l:x=12,P是l上任意一點(diǎn),射線OP交橢圓于點(diǎn)R,又點(diǎn)Q在線段OP上,且滿足|OQ|·|OP|=|OR|2,當(dāng)點(diǎn)P在l上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程. 解 設(shè)P(12,yP),R(xR,yR),Q(x,y),∠POx=α. ∵|OR|2=|OQ|·|OP|,∴2=·. 由題意知xR>0,x>0,∴x=x·12.① 又∵O,Q,R三點(diǎn)共線,∴kOQ=kOR,即=.② 由①②得y=.③ ∵點(diǎn)R(xR,yR)在橢圓+=1上,∴+=1.④

45、由①③④得2(x-1)2+3y2=2(x>0), ∴點(diǎn)Q的軌跡方程是2(x-1)2+3y2=2(x>0). 4.分類(lèi)討論思想 本章中,涉及的字母參數(shù)較多,同時(shí)圓錐曲線的焦點(diǎn)可能在x軸上,也可能在y軸上,所以必須要注意分類(lèi)討論. 例4 求與雙曲線-y2=1有共同的漸近線且焦距為10的雙曲線的方程. 分析 由題意可設(shè)所求雙曲線的方程為-y2=λ(λ≠0),將λ分為λ>0,λ<0兩種情況進(jìn)行討論. 解 由題意可設(shè)所求雙曲線的方程為-y2=λ(λ≠0), 即-=1(λ≠0). 當(dāng)λ>0時(shí),c2=4λ+λ=5λ=25,即λ=5, ∴所求雙曲線的方程為-=1. 當(dāng)λ<0時(shí),c2=(-4

46、λ)+(-λ)=-5λ=25,即λ=-5, ∴所求雙曲線的方程為-=1. 綜上所述,所求雙曲線的方程為-=1或-=1. 5.?dāng)?shù)形結(jié)合思想 利用數(shù)形結(jié)合思想,可以解決某些最值、軌跡、參數(shù)范圍等問(wèn)題. 例5 在△ABC中,BC邊固定,頂點(diǎn)A在移動(dòng),設(shè)|BC|=m,當(dāng)三個(gè)角滿足條件|sinC-sinB|=|sinA|時(shí),求頂點(diǎn)A的軌跡方程. 解 以BC所在直線為x軸,線段BC的中垂線為y軸,建立直角坐標(biāo)系,如圖所示. 則B,C. 設(shè)點(diǎn)A坐標(biāo)(x,y),由題設(shè), 得|sinC-sinB|=|sinA|. 根據(jù)正弦定理,得||AB|-|AC||=<m. 可知點(diǎn)A在以B,C為焦點(diǎn)的雙曲線上. 2a=,∴a=. 又c=,∴b2=c2-a2=-=m2. 故所求點(diǎn)A的軌跡方程為-=1(y≠0). 24

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!