2022高中數(shù)學(xué) 第1章 統(tǒng)計案例章末復(fù)習(xí)提升練習(xí) 蘇教版選修1 -2

上傳人:xt****7 文檔編號:105692580 上傳時間:2022-06-12 格式:DOC 頁數(shù):6 大小:182.50KB
收藏 版權(quán)申訴 舉報 下載
2022高中數(shù)學(xué) 第1章 統(tǒng)計案例章末復(fù)習(xí)提升練習(xí) 蘇教版選修1 -2_第1頁
第1頁 / 共6頁
2022高中數(shù)學(xué) 第1章 統(tǒng)計案例章末復(fù)習(xí)提升練習(xí) 蘇教版選修1 -2_第2頁
第2頁 / 共6頁
2022高中數(shù)學(xué) 第1章 統(tǒng)計案例章末復(fù)習(xí)提升練習(xí) 蘇教版選修1 -2_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高中數(shù)學(xué) 第1章 統(tǒng)計案例章末復(fù)習(xí)提升練習(xí) 蘇教版選修1 -2》由會員分享,可在線閱讀,更多相關(guān)《2022高中數(shù)學(xué) 第1章 統(tǒng)計案例章末復(fù)習(xí)提升練習(xí) 蘇教版選修1 -2(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022高中數(shù)學(xué) 第1章 統(tǒng)計案例章末復(fù)習(xí)提升練習(xí) 蘇教版選修1 -2 1.獨立性檢驗 利用χ2=(其中n=a+b+c+d)來確定在多大程度上認(rèn)為“兩個變量有相關(guān)關(guān)系”.應(yīng)記熟χ2的幾個臨界值的概率. 2.回歸分析 (1)分析兩個變量相關(guān)關(guān)系常用:散點圖或相關(guān)系數(shù)r進(jìn)行判斷.在確認(rèn)具有線性相關(guān)關(guān)系后,再求線性回歸方程,進(jìn)行預(yù)測. (2)對某些特殊的非線性關(guān)系,可以通過變量轉(zhuǎn)化,把非線性回歸轉(zhuǎn)化為線性回歸,再進(jìn)行研究. 題型一 獨立性檢驗思想的應(yīng)用 獨立性檢驗的基本思想是統(tǒng)計中的假設(shè)檢驗思想,類似于數(shù)學(xué)中的反證法,要確認(rèn)兩個分類變量有關(guān)系這一結(jié)論成立的可信程度,首先假設(shè)該結(jié)論不

2、成立,即假設(shè)“兩個分類變量沒有關(guān)系”成立,在該假設(shè)下我們構(gòu)造的隨機(jī)變量χ2應(yīng)該很小,如果由觀測數(shù)據(jù)計算得到的χ2的觀測值很大,則在一定程度上說明假設(shè)不合理. 例1 為了比較注射A,B兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗,將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物A,另一組注射藥物B.下表1和表2分別是注射藥物A和藥物B后的試驗結(jié)果.(皰疹面積單位:mm2) 表1:注射藥物A后皮膚皰疹面積的頻數(shù)分布表 皰疹面積 [60,65) [65,70) [70,75) [75,80) 頻數(shù) 30 40 20 10 表2:注射藥物B后皮膚皰疹面積

3、的頻數(shù)分布表 皰疹面積 [60,65) [65,70) [70,75) [75,80) [80,85) 頻數(shù) 10 25 20 30 15 完成下面2×2列聯(lián)表,能否在犯錯誤概率不超過0.001的前提下,認(rèn)為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”. 表3: 皰疹面積 小于70mm2 皰疹面積不 小于70mm2 合計 注射藥物A a= b= 注射藥物B c= d= 合計 n= 解 列出2×2列聯(lián)表 皰疹面積 小于70mm2 皰疹面積不 小于70mm2 總計 注射藥物A a=70 b=

4、30 100 注射藥物B c=35 d=65 100 合計 105 95 n=200 χ2=≈24.56, 由于χ2>10.828,所以在犯錯誤概率不超過0.001的前提下,認(rèn)為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”. 跟蹤演練1 某企業(yè)為了更好地了解設(shè)備改造與生產(chǎn)合格品的關(guān)系,隨機(jī)抽取了180件產(chǎn)品進(jìn)行分析.其中設(shè)備改造前生產(chǎn)的合格品有36件,不合格品有49件;設(shè)備改造后生產(chǎn)的合格品有65件,不合格品有30件,根據(jù)上面的數(shù)據(jù),你能得出什么結(jié)論? 解 根據(jù)已知條件列出2×2列聯(lián)表: 合格品 不合格品 合計 設(shè)備改造后 65 30 9

5、5 設(shè)備改造前 36 49 85 合計 101 79 180 提出假設(shè)H0:設(shè)備改造與生產(chǎn)合格品無關(guān). 由公式得χ2=≈12.379. ∵χ2>10.828,∴我們有99.9%的把握認(rèn)為設(shè)備改造與生產(chǎn)合格品有關(guān)系. 題型二 線性回歸分析 進(jìn)行線性回歸分析的前提是兩個變量具有線性相關(guān)關(guān)系,否則求出的線性回歸方程就沒有實際意義,所以必須先判斷兩個變量是否線性相關(guān).分析判斷兩個變量是否線性相關(guān)的常用方法是利用散點圖進(jìn)行判斷,若各數(shù)據(jù)點大致分布在通過散點圖中心的一條直線附近,那么就說這兩個變量之間具有線性相關(guān)關(guān)系.此方法直觀、形象,但缺乏精確性. 例2 在一段時間內(nèi),分5次

6、測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為 1 2 3 4 5 價格x 1.4 1.6 1.8 2 2.2 需求量y 12 10 7 5 3 已知xiyi=62,x=16.6. (1)畫出散點圖; (2)求出y對x的線性回歸方程; (3)如果價格定為1.9萬元,預(yù)測需求量大約是多少?(精確到0.01t). 解 (1)散點圖如下圖所示: (2)因為=×9=1.8,=×37=7.4, xiyi=62,x=16.6, 所以===-11.5, =-=7.4+11.5×1.8=28.1, 故y對x的線性回歸方程為=28.1-

7、11.5x. (3)=28.1-11.5×1.9=6.25(t). 故價格定為1.9萬元,預(yù)測需求量大約為6.25t. 跟蹤演練2 某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了4次試驗,得到數(shù)據(jù)如下: 零件的個數(shù)x(個) 2 3 4 5 加工的時間y(小時) 2.5 3 4 4.5 (1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖; (2)求y關(guān)于x的線性回歸方程=x+; (3)試預(yù)測加工10個零件需要的時間. 解 (1)散點圖如圖所示: (2)==3.5,==3.5, iyi=2×2.5+3×3+4×4+5×4.5=52.5, =4

8、+9+16+25=54, ∴==0.7, =3.5-0.7×3.5=1.05, ∴所求線性回歸方程為=0.7x+1.05. (3)當(dāng)x=10時,=0.7×10+1.05=8.05, ∴預(yù)測加工10個零件需要8.05小時. 題型三 非線性回歸分析 非線性回歸問題有時并不給出經(jīng)驗公式.這時我們可以畫出已經(jīng)數(shù)據(jù)的散點圖,把它與已經(jīng)學(xué)過的各種函數(shù)(冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)等)圖象作比較,挑選一種跟這些散點擬合得最好的函數(shù),然后采用適當(dāng)?shù)淖兞恐脫Q,把問題化為線性回歸分析問題,使之得到解決. 例3 下表是某年美國舊轎車價格的調(diào)查資料,今以x表示轎車的使用年數(shù),y是表示相應(yīng)的年均價格,求y

9、關(guān)于x的回歸方程. 使用 年數(shù)x 1 2 3 4 5 6 7 8 9 10 年均價格 y(美元) 2651 1943 1494 1087 765 538 484 290 226 204 解 數(shù)據(jù)對應(yīng)的散點圖如圖1, 圖1 可以發(fā)現(xiàn),各點并不是基本處于一條直線附近,因此,y與x之間是非線性回歸關(guān)系.與已學(xué)函數(shù)圖象比較,用=ex+來刻畫題中模型更為合理,令=ln,則=x+,題中數(shù)據(jù)變成如下表所示: x 1 2 3 4 5 6 7 8 9 10 z 7.883 7.572 7.309 6.991 6.640

10、 6.288 6.182 5.670 5.421 5.318 相應(yīng)的散點圖如圖2,從圖2可以看出,變換的樣本點分布在一條直線附近,因此可以用線性回歸方程擬合. 圖2 由表中數(shù)據(jù)可得r≈-0.996.即|r|>r0.05=0.632,所以有95%的把握認(rèn)為x與z之間具有線性相關(guān)關(guān)系,由表中數(shù)據(jù)得≈-0.298,≈8.165, 所以=-0.298x+8.165,最后代回=ln,即=e-0.298x+8.165為所求. 跟蹤演練3 下表所示是一組試驗數(shù)據(jù): x 0.5 0.25 0.125 0.1 y 64 138 205 285 360 (1)作出

11、x與y的散點圖,并判斷是否線性相關(guān); (2)若變量y與成線性相關(guān)關(guān)系,求出y對x的回歸方程,并觀測x=10時y的值. 解 (1)散點圖如圖: 由散點圖可知y與x不具有線性相關(guān)關(guān)系,且樣本點分布在反比例函數(shù)y=+a的周圍. (2)令x′=,y′=y(tǒng)由已知數(shù)據(jù)制成下表 序號 x′i y′i x′ y′ x′iy′i 1 2 64 4 4096 128 2 4 138 16 19044 552 3 6 205 36 42025 1230 4 8 285 64 81225 2280 5 10 360 100 129600

12、 3600 ∑ 30 1052 220 275990 7790 ′=6,′=210.4, 故′-5()2=40,′-5()2=54649.2, r=≈0.9997,由于|r|>r0.05=0.878,說明y′與x′具有很強(qiáng)的線性關(guān)系,計算知=36.95,=210.4-36.95×6=-11.3,所以y′=-11.3+36.95x′.所求y對x的回歸方程y=-11.3. 當(dāng)x=10時,y=-11.3=-7.605. 1.獨立性檢驗是對兩個分類變量間是否存在相關(guān)關(guān)系的一種案例分析方法,而利用假設(shè)的思想方法,計算出某一個隨機(jī)變量χ2的值來判斷更精確些. 2.建立回歸模型的基本步驟:(1)確定研究對象.(2)畫出散點圖,觀察它們之間的關(guān)系.(3)由經(jīng)驗確定回歸方程的類型.(4)按照一定的規(guī)則估計回歸方程中的參數(shù).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!