《2022年高考數(shù)學一輪復習必備 第08課時:第二章函數(shù)-函數(shù)的概念教案》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學一輪復習必備 第08課時:第二章函數(shù)-函數(shù)的概念教案(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高考數(shù)學一輪復習必備 第08課時:第二章 函數(shù)-函數(shù)的概念教案
一.課題:函數(shù)的概念
二.教學目標:了解映射的概念,在此基礎上加深對函數(shù)概念的理解;能根據(jù)函數(shù)的三要素判斷兩個函數(shù)是否為同一函數(shù);理解分段函數(shù)的意義.
三.教學重點:函數(shù)是一種特殊的映射,而映射是一種特殊的對應;函數(shù)的三要素中對應法則是核心,定義域是靈魂.
四.教學過程:
(一)主要知識:
1.對應、映射、像和原像、一一映射的定義;
2.函數(shù)的傳統(tǒng)定義和近代定義;
3.函數(shù)的三要素及表示法.
(二)主要方法:
1.對映射有兩個關(guān)鍵點:一是有象,二是象惟一,缺一不可;
2.對函數(shù)三要素及其之間的關(guān)
2、系給以深刻理解,這是處理函數(shù)問題的關(guān)鍵;
3.理解函數(shù)和映射的關(guān)系,函數(shù)式和方程式的關(guān)系.
(三)例題分析:
例1.(1),,;
(2),,;
(3),,.
上述三個對應(2)是到的映射.
例2.已知集合,映射,在作用下點的象是,則集合 ( )
解法要點:因為,所以.
例3.設集合,,如果從到的映射滿足條件:對中的每個元素與它在中的象的和都為奇數(shù),則映射的個數(shù)是( )
8個 12個 16個
3、 18個
解法要點:∵為奇數(shù),∴當為奇數(shù)、時,它們在中的象只能為偶數(shù)、或,由分步計數(shù)原理和對應方法有種;而當時,它在中的象為奇數(shù)或,共有種對應方法.故映射的個數(shù)是.
例4.矩形的長,寬,動點、分別在、上,且,(1)將的面積表示為的函數(shù),求函數(shù)的解析式;
(2)求的最大值.
解:(1)
.
∵,∴,
∴函數(shù)的解析式:;
(2)∵在上單調(diào)遞增,∴,即的最大值為.
例5.函數(shù)對一切實數(shù),均有成立,且,
(1)求的值;
(2)對任意的,,都有成立時,求的取值范圍.
解:(1)由已知等式,令,得,
又∵,∴.
(2)由,令得,由(1)知,∴.
∵,∴在上單調(diào)遞增,
∴.
要使任意,都有成立,
當時,,顯然不成立.
當時,,∴,解得
∴的取值范圍是.
(四)鞏固練習:
1.給定映射,點的原象是或.
2.下列函數(shù)中,與函數(shù)相同的函數(shù)是 ( )
3.設函數(shù),則=.
五.課后作業(yè):《高考計劃》考點7,智能訓練5,7,9,10,13,14.