2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第9節(jié) 圓錐曲線的綜合問題 理(含解析)

上傳人:xt****7 文檔編號(hào):105462948 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):20 大?。?82.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第9節(jié) 圓錐曲線的綜合問題 理(含解析)_第1頁
第1頁 / 共20頁
2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第9節(jié) 圓錐曲線的綜合問題 理(含解析)_第2頁
第2頁 / 共20頁
2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第9節(jié) 圓錐曲線的綜合問題 理(含解析)_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第9節(jié) 圓錐曲線的綜合問題 理(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第9節(jié) 圓錐曲線的綜合問題 理(含解析)(20頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)5年真題備考題庫 第八章 第9節(jié) 圓錐曲線的綜合問題 理(含解析) 1.(xx浙江,15分)如圖,設(shè)橢圓C:+=1(a>b>0),動(dòng)直線l與橢圓C只有一個(gè)公共點(diǎn)P,且點(diǎn)P在第一象限. (1)已知直線l的斜率為k,用a,b,k表示點(diǎn)P的坐標(biāo); (2)若過原點(diǎn)O的直線l1與l垂直,證明:點(diǎn)P到直線l1的距離的最大值為a-b. 解:(1)設(shè)直線l的方程為y=kx+m(k<0), 由消去y得 (b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. 由于l與C只有一個(gè)公共點(diǎn),故Δ=0, 即b2-m2+a2k2=0, 解得點(diǎn)P的坐標(biāo)為. 又點(diǎn)P在第一象限,

2、 故點(diǎn)P的坐標(biāo)為P,. (2)由于直線l1過原點(diǎn)O且與l垂直,故直線l1的方程為x+ky=0, 所以點(diǎn)P到直線l1的距離d=, 整理得d=, 因?yàn)閍2k2+≥2ab, 所以≤=a-b, 當(dāng)且僅當(dāng)k2=時(shí)等號(hào)成立. 所以點(diǎn)P到直線l1的距離的最大值為a-b. 2.(xx北京,14分)已知橢圓C:x2+2y2=4. (1)求橢圓C的離心率; (2)設(shè)O為原點(diǎn),若點(diǎn)A在橢圓C上,點(diǎn)B在直線y=2上,且OA⊥OB,試判斷直線AB與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論. 解:(1)由題意,橢圓C的標(biāo)準(zhǔn)方程為+=1. 所以a2=4,b2=2,從而c2=a2-b2=2. 因

3、此a=2,c=. 故橢圓C的離心率e==. (2)直線AB與圓x2+y2=2相切.證明如下: 設(shè)點(diǎn)A,B的坐標(biāo)分別為(x0,y0),(t,2),其中x0≠0. 因?yàn)镺A⊥OB,所以·=0,即tx0+2y0=0,解得t=-. 當(dāng)x0=t時(shí),y0=-,代入橢圓C的方程,得t=±, 故直線AB的方程為x=±.圓心O到直線AB的距離d=. 此時(shí)直線AB與圓x2+y2=2相切. 當(dāng)x0≠t時(shí),直線AB的方程為y-2=(x-t). 即(y0-2)x-(x0-t)y+2x0-ty0=0. d= . 又x+2y=4,t=-,故 d===. 此時(shí)直線AB與圓x2+y2=2相切. 3.

4、(xx湖南,13分)如圖,O為坐標(biāo)原點(diǎn),橢圓C1:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e1;雙曲線C2:-=1的左、右焦點(diǎn)分別為F3,F(xiàn)4,離心率為e2.已知e1e2=,且|F2F4|=-1. (1)求C1,C2的的方程; (2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時(shí),求四邊形APBQ面積的最小值. 解:(1)因?yàn)閑1e2=,所以·=,即a4-b4=a4,因此a2=2b2,從而F2(b,0),F(xiàn)4(b,0).于是b-b=|F2F4|=-1,所以b=1,a2=2,故C1,C2的方程分別為+y2=1,-y2=1. (2

5、)因AB不垂直于y軸,且過點(diǎn)F1(-1,0),故可設(shè)直線AB的方程為x=my-1. 由得(m2+2)y2-2my-1=0. 易知Δ>0,設(shè)A(x1,y1),B(x2,y2),則y1,y2是上述方程的兩個(gè)實(shí)根,所以y1+y2=,y1y2=. 因此x1+x2=m(y1+y2)-2=,于是AB的中點(diǎn)為M,故直線PQ的斜率為-,PQ的方程為y=-x,即mx+2y=0. 由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,從而|PQ|=2=2. 設(shè)點(diǎn)A到直線PQ的距離為d,則點(diǎn)B到直線PQ的距離也為d,所以2d=. 因?yàn)辄c(diǎn)A,B在直線mx+2y=0的異側(cè),所以(mx1+2y1)

6、(mx2+2y2)<0, 于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|, 從而2d=. 又因?yàn)閨y1-y2|==,所以2d=. 故四邊形APBQ的面積S=|PQ|·2d==2·. 而0<2-m2≤2,故當(dāng)m=0時(shí),S取得最小值2. 綜上所述,四邊形APBQ面積的最小值為2. 4.(xx四川,13分)已知橢圓C:+=1(a>b>0)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)F為橢圓C的左焦點(diǎn),T為直線x=-3上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q. ①證明:OT平分線段PQ(其中O

7、為坐標(biāo)原點(diǎn)); ②當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo). 解:(1)由已知可得 解得a2=6,b2=2, 所以橢圓C的標(biāo)準(zhǔn)方程是+=1. (2)①由(1)可得,F(xiàn)的坐標(biāo)是(-2,0), 設(shè)T點(diǎn)的坐標(biāo)為(-3,m), 則直線TF的斜率kTF==-m. 當(dāng)m≠0時(shí),直線PQ的斜率kPQ=,直線PQ的方程是x=my-2. 當(dāng)m=0時(shí),直線PQ的方程是x=-2,也符合x=my-2的形式. 設(shè)P(x1,y1),Q(x2,y2),將直線PQ的方程與橢圓C的方程聯(lián)立,得 消去x,得(m2+3)y2-4my-2=0, 其判別式Δ=16m2+8(m2+3)>0. 所以y1+y2=,y1y2=, x

8、1+x2=m(y1+y2)-4=. 所以PQ的中點(diǎn)M的坐標(biāo)為, 所以直線OM的斜率kOM=-. 又直線OT的斜率kOT=-, 所以點(diǎn)M在直線OT上, 因此OT平分線段PQ. ②由①可得, |TF|=, |PQ|= = = = . 所以= = ≥ =. 當(dāng)且僅當(dāng)m2+1=,即m=±1時(shí),等號(hào)成立,此時(shí)取得最小值. 所以當(dāng)最小時(shí),T點(diǎn)的坐標(biāo)是(-3,1)或(-3,-1). 5.(xx福建,13分)已知雙曲線E:-=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=-2x. (1)求雙曲線E的離心率; (2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線

9、l1,l2于A,B兩點(diǎn)(A,B分別在第一、四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程;若不存在,說明理由. 解:(1)因?yàn)殡p曲線E的漸近線分別為y=2x,y=-2x, 所以=2,所以=2,故c=a, 從而雙曲線E的離心率e==. (2)法一:由(1)知,雙曲線E的方程為-=1. 設(shè)直線l與x軸相交于點(diǎn)C. 當(dāng)l⊥x軸時(shí),若直線l與雙曲線E有且只有一個(gè)公共點(diǎn), 則|OC|=a,|AB|=4a, 又因?yàn)椤鱋AB的面積為8, 所以|OC|·|AB|=8, 因此a·4a=8,解得a=2, 此時(shí)雙曲線E的方程

10、為-=1. 若存在滿足條件的雙曲線E,則E的方程只能為-=1. 以下證明:當(dāng)直線l不與x軸垂直時(shí),雙曲線E:-=1也滿足條件. 設(shè)直線l的方程為y=kx+m,依題意,得k>2或k<-2, 則C.記A(x1,y1),B(x2,y2). 由得y1=,同理得y2=. 由S△OAB=|OC|·|y1-y2|, 得·=8, 即m2=4|4-k2|=4(k2-4). 由得(4-k2)x2-2kmx-m2-16=0. 因?yàn)?-k2<0, 所以Δ=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16), 又因?yàn)閙2=4(k2-4), 所以Δ=0,即l與雙曲線E有且只有

11、一個(gè)公共點(diǎn). 因此,存在總與l有且只有一個(gè)公共點(diǎn)的雙曲線E,且E的方程為-=1. 法二:由(1)知,雙曲線E的方程為-=1. 設(shè)直線l的方程為x=my+t,A(x1,y1),B(x2,y2). 依題意得-<m<. 由得y1=,同理得y2=. 設(shè)直線l與x軸相交于點(diǎn)C,則C(t,0). 由S△OAB=|OC|·|y1-y2|=8, 得|t|·=8, 所以t2=4|1-4m2|=4(1-4m2). 由得(4m2-1)y2+8mty+4(t2-a2)=0. 因?yàn)?m2-1<0,直線l與雙曲線E有且只有一個(gè)公共點(diǎn)當(dāng)且僅當(dāng)Δ=64m2t2-16(4m2-1)(t2-a2)=0,

12、即4m2a2+t2-a2=0,即4m2a2+4(1-4m2)-a2=0,即(1-4m2)(a2-4)=0, 所以a2=4, 因此,存在總與l有且只有一個(gè)公共點(diǎn)的雙曲線E,且E的方程為-=1. 法三:當(dāng)直線l不與x軸垂直時(shí),設(shè)直線l的方程為y=kx+m,A(x1,y1),B(x2,y2). 依題意得k>2或k<-2. 由得(4-k2)x2-2kmx-m2=0, 因?yàn)?-k2<0,Δ>0,所以x1x2=, 又因?yàn)椤鱋AB的面積為8, 所以|OA|·|OB|·sin∠AOB=8, 又易知sin∠AOB=, 所以 ·=8,化簡得x1x2=4. 所以=4,即m2=4(k2-4).

13、 由(1)得雙曲線E的方程為-=1, 由得(4-k2)x2-2kmx-m2-4a2=0. 因?yàn)?-k2<0,直線l與雙曲線E有且只有一個(gè)公共點(diǎn)當(dāng)且僅當(dāng)Δ=4k2m2+4(4-k2)(m2+4a2)=0, 即(k2-4)(a2-4)=0,所以a2=4, 所以雙曲線E的方程為-=1. 當(dāng)l⊥x軸時(shí),由△OAB的面積等于8可得l:x=2,又易知l:x=2與雙曲線E:-=1有且只有一個(gè)公共點(diǎn). 綜上所述,存在總與l有且只有一個(gè)公共點(diǎn)的雙曲線E,且E的方程為-=1. 6.(xx江西,13分)如圖,已知雙曲線C:-y2=1(a>0)的右焦點(diǎn)F,點(diǎn)A,B分別在C的兩條漸近線上,AF⊥x軸,AB

14、⊥OB,BF∥OA(O為坐標(biāo)原點(diǎn)). (1)求雙曲線C的方程; (2)過C上一點(diǎn)P(x0,y0)(y0≠0)的直線l:-y0y=1與直線AF相交于點(diǎn)M,與直線x=相交于點(diǎn)N,證明:當(dāng)點(diǎn)P在C上移動(dòng)時(shí),恒為定值,并求此定值. 解:(1)設(shè)F(c,0),因?yàn)閎=1,所以c=, 直線OB的方程為y=-x,直線BF的方程為y=(x-c),解得B. 又直線OA的方程為y=x, 則A,kAB==. 又因?yàn)锳B⊥OB,所以·=-1,解得a2=3,故雙曲線C的方程為-y2=1. (2)由(1)知a=,則直線l的方程為-y0y=1(y0≠0),即y=. 因?yàn)橹本€AF的方程為x=2,所以直線

15、l與AF的交點(diǎn)M; 直線l與直線x=的交點(diǎn)為N. 則=== ·, 因?yàn)镻(x0,y0)是C上一點(diǎn),則-y=1,代入上式得 =·=·=.所求定值為==. 7.(xx安徽,5分)已知直線y=a交拋物線y=x2于A,B兩點(diǎn).若該拋物線上存在點(diǎn)C,使得∠ACB為直角,則a的取值范圍為________. 解析:本題考查直線與拋物線的位置關(guān)系,圓的性質(zhì),考查考生的轉(zhuǎn)化與化歸能力. 法一:設(shè)直線y=a與y軸交于點(diǎn)M,拋物線y=x2上要存在C點(diǎn),只要以|AB|為直徑的圓與拋物線y=x2有交點(diǎn)即可,也就是使|AM|≤|MO|,即≤a(a>0),所以a≥1. 法二:易知a>0,設(shè)C(m,m2),

16、由已知可令A(yù)(,a),B(-,a),則=(m-,m2-a),=(m+,m2-a),因?yàn)椤?,所以m2-a+m4-2am2+a2=0,可得(m2-a)(m2+1-a)=0.因?yàn)橛深}易知m2≠a,所以m2=a-1≥0,故a∈[1,+∞). 答案:[1,+∞) 7.(xx浙江,4分)設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(-1,0)的直線l交拋物線C于A,B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn).若|FQ|=2,則直線l的斜率等于________. 解析:本題考查拋物線方程、性質(zhì),直線與拋物線的位置關(guān)系,考查數(shù)形結(jié)合思想及運(yùn)算求解能力. 法一:注意到|FQ|=2,正好是拋物線通徑的一半,所以點(diǎn)Q為通徑的

17、一個(gè)端點(diǎn),其坐標(biāo)為(1,±2),這時(shí)A,B,Q三點(diǎn)重合,直線l的斜率為±1. 法二:令直線l的方程為x=ty-1,由得y2-4ty+4=0,設(shè)A(x1,y1),B(x2,y2),則y1+y2=4t,y1y2=4,x1+x2=4t2-2,所以xQ=2t2-1,yQ=2t,|FQ|2=(xQ-1)2+y=4,代入解得,t=±1或t=0(舍去),即直線l的斜率為±1. 答案:±1 8.(xx新課標(biāo)全國Ⅱ,12分)平面直角坐標(biāo)系xOy中,過橢圓M:+=1 (a>b>0)右焦點(diǎn)的直線x+y-=0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為. (1)求M的方程; (2)C,D為M上的兩點(diǎn),

18、若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值. 解:本題考查用待定系數(shù)法求橢圓方程以及直線與橢圓位置關(guān)系的問題,考查利用函數(shù)思想求最值,體現(xiàn)對(duì)考生綜合素質(zhì)特別是對(duì)考生分析問題、解決問題以及化歸與轉(zhuǎn)化能力的考查. (1)設(shè)A(x1,y1),B(x2,y2),P(x0,y0), 則+=1,+=1,=-1, 由此可得=-=1. 因?yàn)閤1+x2=2x0,y1+y2=2y0,=, 所以a2=2b2. 又由題意知,M的右焦點(diǎn)為(,0),故a2-b2=3. 因此a2=6,b2=3. 所以M的方程為+=1. (2)由解得或 因此|AB|=. 由題意可設(shè)直線CD的方程

19、為y=x+n, 設(shè)C(x3,y3),D(x4,y4). 由得3x2+4nx+2n2-6=0. 于是x3,4=. 因?yàn)橹本€CD的斜率為1,所以|CD|=|x4-x3|= . 由已知,四邊形ACBD的面積S=|CD|·|AB|= . 當(dāng)n=0時(shí),S取得最大值,最大值為. 所以四邊形ACBD面積的最大值為. 9.(xx浙江,15分)如圖,點(diǎn)P(0,-1)是橢圓C1:+=1(a>b>0)的一個(gè)頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D. (1)求橢圓C1的方程; (2)求△ABD

20、面積取最大值時(shí)直線l1的方程. 解:本題考查橢圓的幾何性質(zhì),直線與圓的位置關(guān)系,直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),同時(shí)考查解析幾何的基本思想方法和綜合解題能力. (1)由題意得 所以橢圓C1的方程為+y2=1. (2)設(shè)A(x1,y1),B(x2,y2),D(x0,y0).由題意知直線l1的斜率存在,不妨設(shè)其為k,則直線l1的方程為y=kx-1. 又圓C2:x2+y2=4,故點(diǎn)O到直線l1的距離d=, 所以|AB|=2=2 . 又l2⊥l1,故直線l2的方程為x+ky+k=0. 由消去y,整理得(4+k2)x2+8kx=0,故x0=-. 所以|PD|=. 設(shè)△ABD的面積為S

21、,則S=|AB|·|PD|=, 所以S=≤=, 當(dāng)且僅當(dāng)k=±時(shí)取等號(hào). 所以所求直線l1的方程為y=±x-1. 10.(xx江西,13分)如圖,橢圓C:+=1(a>b>0)經(jīng)過點(diǎn)P(1,),離心率e=,直線l的方程為x=4. (1)求橢圓C的方程; (2)AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3. 問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說明理由. 解:本題主要考查橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)、直線與橢圓的位置關(guān)系等,旨在考查考生綜合應(yīng)用知識(shí)的能力. (1)由P在

22、橢圓上得,+=1.① 依題設(shè)知a=2c,則b2=3c2.② ②代入①解得c2=1,a2=4,b2=3. 故橢圓C的方程為+=1. (2)法一:由題意可設(shè)直線AB的斜率為k, 則直線AB的方程為y=k(x-1).③ 代入橢圓方程3x2+4y2=12并整理,得(4k2+3)x2-8k2x+4(k2-3)=0. 設(shè)A(x1,y1),B(x2,y2),則有 x1+x2=,x1x2=.④ 在方程③中令x=4得,M的坐標(biāo)為(4,3k). 從而k1=,k2=,k3==k-. 由于A,F(xiàn),B三點(diǎn)共線,則有k=kAF=kBF,即有==k. 所以k1+k2=+=+-=2k-·.⑤ ④代入

23、⑤得k1+k2=2k-·=2k-1, 又k3=k-,所以k1+k2=2k3.故存在常數(shù)λ=2符合題意. 法二:設(shè)B(x0,y0)(x0≠1),則直線FB的方程為y=(x-1), 令x=4,求得M, 從而直線PM的斜率為k3=, 聯(lián)立得A, 則直線PA的斜率為k1=,直線PB的斜率為k2=,所以k1+k2=+==2k3, 故存在常數(shù)λ=2符合題意. 11.(xx福建,13分)如圖,在正方形OABC中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)C的坐標(biāo)為(0,10).分別將線段OA和AB十等分,分點(diǎn)分別記為A1,A2,…,A9和B1,B2,…,B9連接OBi,過Ai作x軸的垂線與O

24、Bi交于點(diǎn)Pi(i∈N*,1≤i≤9). (1)求證:點(diǎn)Pi(i∈N*,1≤i≤9)都在同一條拋物線上,并求該拋物線E的方程; (2)過點(diǎn)C作直線l與拋物線E交于不同的兩點(diǎn)M,N,若△OCM與△OCN的面積比為4∶1,求直線l的方程. 解:本小題主要考查拋物線的性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想. 法一:(1)依題意,過Ai(i∈N*,1≤i≤9)且與x軸垂直的直線的方程為x=i, Bi的坐標(biāo)為(10,i),所以直線OBi的方程為y=x. 設(shè)Pi的坐標(biāo)為(x,y),由 得y=x2,即x2=10y

25、. 所以點(diǎn)Pi(i∈N*,1≤i≤9)都在同一條拋物線上,且拋物線E的方程為x2=10y. (2)依題意,直線l的斜率存在,設(shè)直線l的方程為y=kx+10. 由得x2-10kx-100=0, 此時(shí)Δ=100k2+400>0,直線l與拋物線E恒有兩個(gè)不同的交點(diǎn)M,N. 設(shè)M(x1,y1),N(x2,y2),則 因?yàn)镾△OCM=4S△OCN,所以|x1|=4|x2|. 又x1·x2<0,所以x1=-4x2, 分別代入①和②,得解得k=±. 所以直線l的方程為y=±x+10,即3x-2y+20=0或3x+2y-20=0. 法二:(1)點(diǎn)Pi(i∈N*,1≤i≤9)都在拋物線E:x

26、2=10y上. 證明如下:過Ai(i∈N*,1≤i≤9)且與x軸垂直的直線的方程為x=i, Bi的坐標(biāo)為(10,i),所以直線OBi的方程為y=x. 由解得Pi的坐標(biāo)為. 因?yàn)辄c(diǎn)Pi的坐標(biāo)都滿足方程x2=10y, 所以點(diǎn)Pi(i∈N*,1≤i≤9)都在同一條拋物線上,且拋物線E的方程為x2=10y. (2)同法一. 12.(xx遼寧,5分)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過P,Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為(  ) A.1                B.3 C.-4 D.-8 解析:因?yàn)镻,Q兩點(diǎn)的橫坐標(biāo)分

27、別為4,-2,且P,Q兩點(diǎn)都在拋物線y=x2上,所以P(4,8),Q(-2,2).因?yàn)閥′=x,所以kPA=4,kQA=-2,則直線PA,QA的方程聯(lián)立得,即,可得A點(diǎn)坐標(biāo)為(1,-4). 答案:C 13.(xx北京,5分)在直角坐標(biāo)系xOy中,直線l過拋物線y2=4x的焦點(diǎn)F,且與該拋物線相交于A,B兩點(diǎn),其中點(diǎn)A在x軸上方.若直線l的傾斜角為60°,則△OAF的面積為________. 解析:直線l的方程為y=(x-1),即x=y(tǒng)+1,代入拋物線方程得y2-y-4=0,解得yA==2(yB<0,舍去),故△OAF的面積為×1×2=. 答案: 14.(xx新課標(biāo)全國,12分)設(shè)拋物

28、線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn). (1)若∠BFD=90°,△ABD的面積為4,求p的值及圓F的方程; (2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值. 解:(1)由已知可得△BFD為等腰直角三角形,|BD|=2p,圓F的半徑|FA|=p. 由拋物線定義可知A到l的距離d=|FA|=p. 因?yàn)椤鰽BD的面積為4,所以|BD|·d=4,即·2p·p=4,解得p=-2(舍去)或p=2. 所以F(0,1),圓F的方程為x2+(y-1)2=8. (

29、2)因?yàn)锳,B,F(xiàn)三點(diǎn)在同一直線m上,所以AB為圓F的直徑,∠ADB=90°. 由拋物線定義知|AD|=|FA|=|AB|, 所以∠ABD=30°,m的斜率為或-. 當(dāng)m的斜率為時(shí),由已知可設(shè)n:y=x+b,代入x2=2py得x2-px-2pb=0. 由于n與C只有一個(gè)公共點(diǎn),故Δ=p2+8pb=0,解得b=-. 因?yàn)閙的縱截距b1=,=3,所以坐標(biāo)原點(diǎn)到m,n距離的比值為3. 當(dāng)m的斜率為-時(shí),由圖形對(duì)稱性可知,坐標(biāo)原點(diǎn)到m,n距離的比值為3. 15.(xx廣東,14分)在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離

30、的最大值為3. (1)求橢圓C的方程; (2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由. 解:(1)由e== =,得a=b, 橢圓C:+=1,即x2+3y2=3b2, 設(shè)P(x,y)為C上任意一點(diǎn), 則|PQ|==,-b≤y≤b,  若b<1,則-b>-1,當(dāng)y=-b時(shí),|PQ|max==3,又b>0,得b=1(舍去), 若b≥1,則-b≤-1,當(dāng)y=-1時(shí),|PQ|max==3,得b=1, 所以橢圓C的方程為+y2=1.

31、 (2)法一:假設(shè)存在這樣的點(diǎn)M(m,n)滿足題意,則有+n2=1,即n2=1-,-≤m≤.由題意可得S△AOB=|OA|·|OB|sin ∠AOB=sin ∠AOB≤, 當(dāng)∠AOB=90°時(shí)取等號(hào),這時(shí)△AOB為等腰直角三角形, 此時(shí)圓心(0,0)到直線mx+ny=1的距離為, 則 =,得m2+n2=2,又+n2=1, 解得m2=,n2=, 即存在點(diǎn)M的坐標(biāo)為(,),(,-),(-,),(-,-) 滿足題意,且△AOB的最大面積為. 法二:假設(shè)存在這樣的點(diǎn)M(m,n)滿足題意,則有+n2=1,即n2=1-,-≤m≤, 又設(shè)A(x1,y1)、B(x2,y2),由消去y得(m2

32、+n2)x2-2mx+1-n2=0,① 把n2=1-代入①整理得(3+2m2)x2-6mx+m2=0, 則Δ=8m2(3-m2)≥0, 所以② 而S△AOB=|OA|·|OB|sin ∠AOB=sin ∠AOB, 當(dāng)∠AOB=90°,S△AOB取得最大值, 此時(shí)·=x1x2+y1y2=0,又y1y2=·=, 所以x1x2+=0, 即3-3m(x1+x2)+(3+2m2)·x1x2=0, 把②代入上式整理得2m4-9m2+9=0,解得m2=或m2=3(舍去), 所以m=±,n=± =±, 所以M點(diǎn)的坐標(biāo)為(,),(,-),(-,), (-,-),使得S△AOB取得最大值.

33、 16.(xx安徽,13分)如圖,點(diǎn)F1(-c,0),F(xiàn)2(c,0)分別是橢圓C:+=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1作x軸的垂線交橢圓C的上半部分于點(diǎn)P,過點(diǎn)F2作直線PF2的垂線交直線x=于點(diǎn)Q. (1)如果點(diǎn)Q的坐標(biāo)是(4,4),求此時(shí)橢圓C的方程; (2)證明:直線PQ與橢圓C只有一個(gè)交點(diǎn). 解:(1)法一:由條件知,P(-c,).故直線PF2的斜率為kPF2==-. 因?yàn)镻F2⊥F2Q,所以直線F2Q的方程為y=x-.故Q(,2a). 由題設(shè)知,=4,2a=4,解得a=2,c=1. 故橢圓方程為+=1. 法二:設(shè)直線x=與x軸交于點(diǎn)M.由條件知,P(-c,).

34、 因?yàn)椤鱌F1F2∽△F2MQ,所以=. 即=,解得|MQ|=2a. 所以解得a=2,c=1. 故橢圓方程為+=1. (2)直線PQ的方程為=,即y=x+a. 將上式代入橢圓方程得,x2+2cx+c2=0, 解得x=-c,y=. 所以直線PQ與橢圓C只有一個(gè)交點(diǎn). 17.(xx福建,13分)如圖,橢圓E:+=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8. (1)求橢圓E的方程; (2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以P

35、Q為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由. 解:法一:(1)因?yàn)閨AB|+|AF2|+|BF2|=8, 即|AF1|+|F1B|+|AF2|+|BF2|=8, 又|AF1|+|AF2|=|BF1|+|BF2|=2a, 所以4a=8,a=2. 又因?yàn)閑=,即=,所以c=1, 所以b==. 故橢圓E的方程是+=1. (2)由得(4k2+3)x2+8kmx+4m2-12=0. 因?yàn)閯?dòng)直線l與橢圓E有且只有一個(gè)公共點(diǎn)P(x0,y0),所以m≠0且Δ=0, 即64k2m2-4(4k2+3)(4m2-12)=0,化簡得4k2-m2+3=0.(*) 此時(shí)x0=-

36、=-,y0=kx0+m=,所以P(-,). 由得Q(4,4k+m). 假設(shè)平面內(nèi)存在定點(diǎn)M滿足條件,由圖形對(duì)稱性知,點(diǎn)M必在x軸上. 設(shè)M(x1,0),則·=0對(duì)滿足(*)式的m,k恒成立. 因?yàn)椋?--x1,),=(4-x1,4k+m), 由·=0, 得-+-4x1+x++3=0, 整理,得(4x1-4)+x-4x1+3=0.(**) 由于(**)式對(duì)滿足(*)式的m,k恒成立,所以解得x1=1. 故存在定點(diǎn)M(1,0),使得以PQ為直徑的圓恒過點(diǎn)M. 法二:(1)同法一. (2)由得(4k2+3)x2+8kmx+4m2-12=0. 因?yàn)閯?dòng)直線l與橢圓E有且只有一個(gè)公

37、共點(diǎn)P(x0,y0),所以m≠0且Δ=0, 即64k2m2-4(4k2+3)(4m2-12)=0, 化簡得4k2-m2+3=0.(*) 此時(shí)x0=-=-,y0=kx0+m=,所以P(-,). 由得Q(4,4k+m). 假設(shè)平面內(nèi)存在定點(diǎn)M滿足條件,由圖形對(duì)稱性知,點(diǎn)M必在x軸上. 取k=0,m=,此時(shí)P(0,),Q(4,),以PQ為直徑的圓為(x-2)2+(y-)2=4,交x軸于點(diǎn)M1(1,0),M2(3,0);取k=-,m=2,此時(shí)P(1,),Q(4,0),以PQ為直徑的圓為(x-)2+(y-)2=,交x軸于點(diǎn)M3(1,0),M4(4,0).所以若符合條件的點(diǎn)M存在,則M的坐標(biāo)必

38、為(1,0). 以下證明M(1,0)就是滿足條件的點(diǎn): 因?yàn)镸的坐標(biāo)為(1,0),所以=(--1,),=(3,4k+m),從而·=--3++3=0, 故恒有⊥,即存在定點(diǎn)M(1,0),使得以PQ為直徑的圓恒過點(diǎn)M. 18.(2011江蘇,16分)如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓+=1的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中點(diǎn)P在第一象限,過P作x軸的垂線,垂足為C.連接AC,并延長交橢圓于點(diǎn)B.設(shè)直線PA的斜率為k. (1)當(dāng)直線PA平分線段MN時(shí),求k的值; (2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d; (3)對(duì)任意的k>0,求證:PA⊥PB. 解:(

39、1)由題設(shè)知,a=2,b=,故M(-2,0),N(0,-), 所以線段MN中點(diǎn)的坐標(biāo)為(-1,-). 由于直線PA平分線段MN,故直線PA過線段MN的中點(diǎn),又直線PA過坐標(biāo)原點(diǎn),所以k==. (2)直線PA的方程為y=2x,代入橢圓方程得+=1,解得x=±,因此P(,),A(-,-). 于是C(,0),直線AC的斜率為=1,故直線AB的方程為x-y-=0. 因此,d==. (3)證明:法一:將直線PA的方程y=kx代入+=1,解得x=±. 記μ=, 則P(μ,μk),A(-μ,-μk),于是C(μ,0). 故直線AB的斜率為=, 其方程為y=(x-μ),代入橢圓方程并由μ=得(2+k2)x2-2μk2x-μ2(3k2+2)=0, 解得x=或x=-μ. 因此B(,). 于是直線PB的斜率k1===-. 因此k1k=-1,所以PA⊥PB. 法二:設(shè)P(x1,y1),B(x2,y2),則x1>0,x2>0,x1≠x2,A(-x1,-y1),C(x1,0).設(shè)直線PB,AB的斜率分別為k1,k2.因?yàn)镃在直線AB上,所以k2===.從而 k1k+1=2k1k2+1=2··+1= +1===0. 因此k1k=-1,所以PA⊥PB.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!