《2021高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù) 第9節(jié) 函數(shù)與方程教學(xué)案 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2021高考數(shù)學(xué)一輪復(fù)習(xí) 第2章 函數(shù) 第9節(jié) 函數(shù)與方程教學(xué)案 文 北師大版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第九節(jié) 函數(shù)與方程
[最新考綱] 結(jié)合二次函數(shù)的圖像,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性與根的個(gè)數(shù).
(對(duì)應(yīng)學(xué)生用書第33頁(yè))
1.函數(shù)的零點(diǎn)
(1)定義:函數(shù)y=f(x)的圖像與橫軸的交點(diǎn)的橫坐標(biāo)稱為這個(gè)函數(shù)的零點(diǎn).
(2)函數(shù)零點(diǎn)與方程根的關(guān)系:方程f(x)=0有實(shí)根?函數(shù)y=f(x)的圖像與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn).
(3)零點(diǎn)存在性定理
若函數(shù)y=f(x)在閉區(qū)間[a,b]上的圖像是連續(xù)曲線,并且在區(qū)間端點(diǎn)的函數(shù)值符號(hào)相反,即f(a)·f(b)<0,則在區(qū)間(a,b)內(nèi),函數(shù)y=f(x)至少有一個(gè)零點(diǎn),即相應(yīng)方程f(x)=0在區(qū)間(
2、a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解.
2.二次函數(shù)y=ax2+bx+c(a>0)的圖像與零點(diǎn)的關(guān)系
Δ>0
Δ=0
Δ<0
二次函數(shù)
y=ax2+bx+c
(a>0)的圖像
與x軸的交點(diǎn)
(x1,0),(x2,0)
(x1,0)
無交點(diǎn)
零點(diǎn)個(gè)數(shù)
2
1
0
有關(guān)函數(shù)零點(diǎn)的三個(gè)結(jié)論
(1)若連續(xù)不斷的函數(shù)f(x)在定義域上是單調(diào)函數(shù),則f(x)至多有一個(gè)零點(diǎn).
(2)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào).
(3)連續(xù)不斷的函數(shù)圖像通過零點(diǎn)時(shí),函數(shù)值可能變號(hào),也可能不變號(hào).
一、思考辨析(正確的打“√”,錯(cuò)誤的打“×”)
3、
(1)函數(shù)的零點(diǎn)就是函數(shù)的圖像與x軸的交點(diǎn). ( )
(2)函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn)(函數(shù)圖像連續(xù)不斷),則f(a)·f(b)<0. ( )
(3)若函數(shù)f(x)在(a,b)上單調(diào)且f(a)·f(b)<0,則函數(shù)f(x)在[a,b]上有且只有一個(gè)零點(diǎn). ( )
(4)二次函數(shù)y=ax2+bx+c在b2-4ac<0時(shí)沒有零點(diǎn). ( )
[答案](1)× (2)× (3)× (4)√
二、教材改編
1.已知函數(shù)y=f(x)的圖像是連續(xù)不斷的曲線,且有如下的對(duì)應(yīng)值表:
x
1
2
3
4
5
6
y
124.4
33
-74
24.5
4、
-36.7
-123.6
則函數(shù)y=f(x)在區(qū)間[1,6]上的零點(diǎn)至少有( )
A.2個(gè) B.3個(gè)
C.4個(gè) D.5個(gè)
B [∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函數(shù)f(x)在區(qū)間[1,6]內(nèi)至少有3個(gè)零點(diǎn).]
2.函數(shù)f(x)=ln x+2x-6的零點(diǎn)所在的區(qū)間是( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
C [由題意得f(1)=ln 1+2-6=-4<0,f(2)=ln 2+4-6=ln 2-2<0,
f(3)=ln 3+6-6=ln 3>0,
f(4)=ln 4+8-6=ln 4
5、+2>0,
∴f(x)的零點(diǎn)所在的區(qū)間為(2,3).]
3.函數(shù)f(x)=ex+3x的零點(diǎn)個(gè)數(shù)是________.
1 [由已知得f′(x)=ex+3>0,所以f(x)在R上單調(diào)遞增,又f(-1)=-3<0,f(0)=1>0,因此函數(shù)f(x)有且只有一個(gè)零點(diǎn).]
4.函數(shù)f(x)=x-的零點(diǎn)個(gè)數(shù)為________.
1 [作函數(shù)y1=x和y2=的圖像如圖所示.
由圖像知函數(shù)f(x)有1個(gè)零點(diǎn).]
(對(duì)應(yīng)學(xué)生用書第33頁(yè))
⊙考點(diǎn)1 函數(shù)零點(diǎn)所在區(qū)間的判定
判斷函數(shù)零點(diǎn)所在區(qū)間的方法
(1)解方程法,當(dāng)對(duì)應(yīng)方程易解時(shí),可直接解方程;
(2)零點(diǎn)存在性定理;
(3)數(shù)
6、形結(jié)合法,畫出相應(yīng)函數(shù)圖像,觀察與x軸交點(diǎn)來判斷,或轉(zhuǎn)化為兩個(gè)函數(shù)的圖像在所給區(qū)間上是否有交點(diǎn)來判斷.
1.函數(shù)f(x)=ln x-的零點(diǎn)所在的區(qū)間為( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
B [由題意知函數(shù)f(x)是增函數(shù),因?yàn)閒(1)<0,f(2)=ln 2-=ln 2-ln >0,所以函數(shù)f(x)的零點(diǎn)所在的區(qū)間是(1,2).故選B.]
2.若a<b<c,則函數(shù)f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的兩個(gè)零點(diǎn)分別位于區(qū)間( )
A.(a,b)和(b,c)內(nèi)
B.(-∞,a)和(a,b)內(nèi)
C.
7、(b,c)和(c,+∞)內(nèi)
D.(-∞,a)和(c,+∞)內(nèi)
A [∵a<b<c,∴f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,
由函數(shù)零點(diǎn)存在性判定定理可知:在區(qū)間(a,b)(b,c)內(nèi)分別存在一個(gè)零點(diǎn);
又函數(shù)f(x)是二次函數(shù),最多有兩個(gè)零點(diǎn),
因此函數(shù)f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(a,b),(b,c)內(nèi),故選A.]
3.已知函數(shù)f(x)=ln x+2x-6的零點(diǎn)在(k∈Z)內(nèi),那么k=________.
5 [∵f′(x)=+2>0,x∈(0,+∞),∴f(x)在x∈(0,+∞)上單調(diào)遞增,且f=ln -1
8、<0,f(3)=ln 3>0,∴f(x)的零點(diǎn)在內(nèi),則整數(shù)k=5.]
(1)f(a)·f(b)<0是連續(xù)函數(shù)y=f(x)在閉區(qū)間[a,b]上有零點(diǎn)的充分不必要條件.
(2)若函數(shù)f(x)在[a,b]上是單調(diào)函數(shù),且f(x)的圖像連續(xù)不斷,則f(a)·f(b)<0?函數(shù)f(x)在區(qū)間[a,b]上只有一個(gè)零點(diǎn).
⊙考點(diǎn)2 函數(shù)零點(diǎn)個(gè)數(shù)的判斷
求函數(shù)零點(diǎn)個(gè)數(shù)的基本解法
(1)直接法,令f(x)=0,在定義域范圍內(nèi)有多少個(gè)解則有多少個(gè)零點(diǎn);
(2)定理法,利用定理時(shí)往往還要結(jié)合函數(shù)的單調(diào)性、奇偶性等;
(3)圖像法,一般是把函數(shù)分拆為兩個(gè)簡(jiǎn)單函數(shù),依據(jù)兩函數(shù)圖像的交點(diǎn)個(gè)數(shù)得出函數(shù)的零點(diǎn)
9、個(gè)數(shù).
(1)(2019·全國(guó)卷Ⅲ)函數(shù)f(x)=2sin x-sin 2x在[0,2π]的零點(diǎn)個(gè)數(shù)為( )
A.2 B.3
C.4 D.5
(2)函數(shù)f(x)=的零點(diǎn)個(gè)數(shù)為( )
A.0 B.1
C.2 D.3
(3)設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=ex+x-3,則f(x)的零點(diǎn)個(gè)數(shù)為( )
A.1 B.2
C.3 D.4
(1)B (2)D (3)C [(1)由f(x)=2sin x-sin 2x=2sin x-2sin xcos x=2sin x·(1-cos x)=0得sin x=0或cos x=1,∴x=kπ,k∈Z,又∵x∈[0,
10、2π],∴x=0,π,2π,即零點(diǎn)有3個(gè),故選B.
(2)依題意,在考慮x>0時(shí)可以畫出函數(shù)y=ln x與y=x2-2x的圖像(如圖),可知兩個(gè)函數(shù)的圖像有兩個(gè)交點(diǎn),當(dāng)x≤0時(shí),函數(shù)f(x)=2x+1與x軸只有一個(gè)交點(diǎn),綜上,函數(shù)f(x)有3個(gè)零點(diǎn).故選D.
(3)因?yàn)楹瘮?shù)f(x)是定義域?yàn)镽的奇函數(shù),所以f(0)=0,即x=0是函數(shù)f(x)的1個(gè)零點(diǎn).
當(dāng)x>0時(shí),令f(x)=ex+x-3=0,則ex=-x+3,分別畫出函數(shù)y=ex和y=-x+3的圖像,如圖所示,兩函數(shù)圖像有1個(gè)交點(diǎn),所以函數(shù)f(x)有1個(gè)零點(diǎn).
根據(jù)對(duì)稱性知,當(dāng)x<0時(shí),函數(shù)f(x)也有1個(gè)零點(diǎn).綜上所述,f(x)
11、的零點(diǎn)個(gè)數(shù)為3.]
(1)利用函數(shù)的零點(diǎn)存在性定理時(shí),不僅要求函數(shù)的圖像在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖像與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個(gè)零點(diǎn).
(2)圖像法求函數(shù)零點(diǎn)個(gè)數(shù)的關(guān)鍵是正確畫出函數(shù)的圖像.在畫函數(shù)的圖像時(shí),常利用函數(shù)的性質(zhì),如周期性、對(duì)稱性等,同時(shí)還要注意函數(shù)定義域的限制.
1.函數(shù)f(x)=2x|log0.5 x|-1的零點(diǎn)個(gè)數(shù)為( )
A.1 B.2
C.3 D.4
B [令f(x)=2x|log0.5x|-1=0,
可得|log0.5x|=.
設(shè)g(x)=|log0.5x|,h(x)=.
在同
12、一坐標(biāo)系下分別畫出函數(shù)g(x),h(x)的圖像,可以發(fā)現(xiàn)兩個(gè)函數(shù)圖像一定有2個(gè)交點(diǎn),因此函數(shù)f(x)有2個(gè)零點(diǎn).故選B.]
2.已知函數(shù)f(x)=若f(0)=-2,f(-1)=1,則函數(shù)g(x)=f(x)+x的零點(diǎn)個(gè)數(shù)為________.
3 [依題意得由此解得
由g(x)=0得f(x)+x=0,
該方程等價(jià)于 ①
或 ②
解①得x=2,解②得x=-1或x=-2.因此,函數(shù)g(x)=f(x)+x的零點(diǎn)個(gè)數(shù)為3.]
⊙考點(diǎn)3 函數(shù)零點(diǎn)的應(yīng)用
根據(jù)函數(shù)零點(diǎn)的情況求參數(shù)的三種常用方法
(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍.
(2)分
13、離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決.
(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中畫出函數(shù)的圖像,然后數(shù)形結(jié)合求解.
根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)
已知函數(shù)f(x)=|x2+3x|,x∈R,若方程f(x)-a|x-1|=0恰有4個(gè)互異的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是________.
(0,1)∪(9,+∞) [設(shè)y1=f(x)=|x2+3x|,y2=a|x-1|,在同一直角坐標(biāo)系中作出y1=|x2+3x|,y2=a|x-1|的圖像如圖所示.
由圖可知f(x)-a|x-1|=0有4個(gè)互異的實(shí)數(shù)根等價(jià)于y1=|x2+3x|與y2=a|x-1|的圖像有4個(gè)不同的
14、交點(diǎn)且4個(gè)交點(diǎn)的橫坐標(biāo)都小于1,
所以 有兩組不同解,
消去y得x2+(3-a)x+a=0有兩個(gè)不等實(shí)根,
所以Δ=(3-a)2-4a>0,即a2-10a+9>0,
解得a<1或a>9.
又由圖像得a>0,∴0<a<1或a>9.]
由函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的值或范圍的策略
已知函數(shù)的零點(diǎn)個(gè)數(shù),一般利用數(shù)形結(jié)合思想轉(zhuǎn)化為兩個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù),這時(shí)圖形一定要準(zhǔn)確,這種數(shù)形結(jié)合的方法能夠幫助我們直觀解題.
根據(jù)函數(shù)有無零點(diǎn)求參數(shù)
已知函數(shù)f(x)=則使函數(shù)g(x)=f(x)+x-m有零點(diǎn)的實(shí)數(shù)m的取值范圍是________.
(-∞,0]∪(1,+∞) [函數(shù)g(x)=f(
15、x)+x-m的零點(diǎn)就是方程f(x)+x=m的根,畫出h(x)=f(x)+x=的大致圖像(圖略).
觀察它與直線y=m的交點(diǎn),得知當(dāng)m≤0或m>1時(shí),有交點(diǎn),即函數(shù)g(x)=f(x)+x-m有零點(diǎn).]
函數(shù)有無零點(diǎn)問題?函數(shù)圖像與x軸有無公共點(diǎn)問題.
根據(jù)零點(diǎn)的范圍求參數(shù)
若函數(shù)f(x)=(m-2)x2+mx+(2m+1)的兩個(gè)零點(diǎn)分別在區(qū)間(-1,0)和區(qū)間(1,2)內(nèi),則m的取值范圍是________.
[依題意,結(jié)合函數(shù)f(x)的圖像分析可知m需滿足
即
解得<m<.]
此類問題多轉(zhuǎn)化為討論區(qū)間端點(diǎn)處函數(shù)值的符號(hào)求解.
1.函數(shù)f(x)=2x--a的一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則實(shí)數(shù)a的取值范圍是( )
A.(1,3) B.(1,2) C.(0,3) D.(0,2)
C [因?yàn)閒(x)在(0,+∞)上是增函數(shù),則由題意得f(1)·f(2)=(0-a)(3-a)<0,解得0<a<3,故選C.]
2.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=k有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是________.
(-1,0) [關(guān)于x的方程f(x)=k有三個(gè)不同的實(shí)根,等價(jià)于函數(shù)y1=f(x)與函數(shù)y2=k的圖像有三個(gè)不同的交點(diǎn),作出函數(shù)的圖像如圖所示,由圖可知實(shí)數(shù)k的取值范圍是(-1,0).]
- 7 -