2022年高中數(shù)學(xué)競(jìng)賽教材講義 第十四章 極限與導(dǎo)數(shù)

上傳人:xt****7 文檔編號(hào):105420952 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):7 大?。?47.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高中數(shù)學(xué)競(jìng)賽教材講義 第十四章 極限與導(dǎo)數(shù)_第1頁(yè)
第1頁(yè) / 共7頁(yè)
2022年高中數(shù)學(xué)競(jìng)賽教材講義 第十四章 極限與導(dǎo)數(shù)_第2頁(yè)
第2頁(yè) / 共7頁(yè)
2022年高中數(shù)學(xué)競(jìng)賽教材講義 第十四章 極限與導(dǎo)數(shù)_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學(xué)競(jìng)賽教材講義 第十四章 極限與導(dǎo)數(shù)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué)競(jìng)賽教材講義 第十四章 極限與導(dǎo)數(shù)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué)競(jìng)賽教材講義 第十四章 極限與導(dǎo)數(shù)一、 基礎(chǔ)知識(shí)1極限定義:(1)若數(shù)列un滿足,對(duì)任意給定的正數(shù),總存在正數(shù)m,當(dāng)nm且nN時(shí),恒有|un-A|f(a)且f(c)=m,則c(a,b),且f(c)為最大值,故,綜上得證。14Lagrange中值定理:若f(x)在a,b上連續(xù),在(a,b)上可導(dǎo),則存在(a,b),使證明 令F(x)=f(x)-,則F(x)在a,b上連續(xù),在(a,b)上可導(dǎo),且F(a)=F(b),所以由13知存在(a,b)使=0,即15曲線凸性的充分條件:設(shè)函數(shù)f(x)在開(kāi)區(qū)間I內(nèi)具有二階導(dǎo)數(shù),(1)如果對(duì)任意xI,則曲線y=f(x)在I內(nèi)是下凸的;(2)如果對(duì)

2、任意xI,則y=f(x)在I內(nèi)是上凸的。通常稱上凸函數(shù)為凸函數(shù),下凸函數(shù)為凹函數(shù)。16琴生不等式:設(shè)1,2,nR+,1+2+n=1。(1)若f(x)是a,b上的凸函數(shù),則x1,x2,xna,b有f(a1x1+a2x2+anxn)a1f(x1)+a2f(x2)+anf(xn).二、方法與例題1極限的求法。例1 求下列極限:(1);(2);(3);(4)解(1)=;(2)當(dāng)a1時(shí),當(dāng)0a1時(shí), 當(dāng)a=1時(shí),(3)因?yàn)槎裕?)例2 求下列極限:(1)(1+x)(1+x2)(1+)(1+)(|x|0且)。解 (1)3cos(3x+1).(2)(3)(4)(5)5用導(dǎo)數(shù)討論函數(shù)的單調(diào)性。例6 設(shè)a0

3、,求函數(shù)f(x)=-ln(x+a)(x(0,+)的單調(diào)區(qū)間。解 ,因?yàn)閤0,a0,所以x2+(2a-4)x+a20;x2+(2a-4)x+a+1時(shí),對(duì)所有x0,有x2+(2a-4)x+a20,即(x)0,f(x)在(0,+)上單調(diào)遞增;(2)當(dāng)a=1時(shí),對(duì)x1,有x2+(2a-4)x+a20,即,所以f(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+)內(nèi)遞增,又f(x)在x=1處連續(xù),因此f(x)在(0,+)內(nèi)遞增;(3)當(dāng)0a0,解得x2-a+,因此,f(x)在(0,2-a-)內(nèi)單調(diào)遞增,在(2-a+,+)內(nèi)也單調(diào)遞增,而當(dāng)2-a-x2-a+時(shí),x2+(2a-4)x+a22x.證明 設(shè)f(x)=si

4、nx+tanx-2x,則=cosx+sec2x-2,當(dāng)時(shí),(因?yàn)?cosxf(0)=0,即sinx+tanx2x.7.利用導(dǎo)數(shù)討論極值。例8 設(shè)f(x)=alnx+bx2+x在x1=1和x2=2處都取得極值,試求a與b的值,并指出這時(shí)f(x)在x1與x2處是取得極大值還是極小值。解 因?yàn)閒(x)在(0,+)上連續(xù),可導(dǎo),又f(x)在x1=1,x2=2處取得極值,所以,又+2bx+1,所以解得所以.所以當(dāng)x(0,1)時(shí),所以f(x)在(0,1上遞減;當(dāng)x(1,2)時(shí),所以f(x)在1,2上遞增;當(dāng)x(2,+)時(shí),所以f(x)在2,+)上遞減。綜上可知f(x)在x1=1處取得極小值,在x2=2處取

5、得極大值。例9 設(shè)x0,y0,1,試求函數(shù)f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x的最小值。解 首先,當(dāng)x0,y0,1時(shí),f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x=(1-y)2x,令g(x)=,當(dāng)時(shí),因?yàn)閏osx0,tanxx,所以;當(dāng)時(shí),因?yàn)閏osx0,tanx0,所以;又因?yàn)間(x)在(0,)上連續(xù),所以g(x)在(0,)上單調(diào)遞減。又因?yàn)?(1-y)xxg(x),即,又因?yàn)椋援?dāng)x(0,),y(0,1)時(shí),f(x,y)0.其次,當(dāng)x=0時(shí),f(x,y)=0;當(dāng)x=時(shí),f(x,y)=(1-y)sin(1-y)0.當(dāng)y=1時(shí),

6、f(x,y)=-sinx+sinx=0;當(dāng)y=1時(shí),f(x,y)=sinx0.綜上,當(dāng)且僅當(dāng)x=0或y=0或x=且y=1時(shí),f(x,y)取最小值0。三、基礎(chǔ)訓(xùn)練題1=_.2已知,則a-b=_.3_.4_.5計(jì)算_.6若f(x)是定義在(-,+)上的偶函數(shù),且存在,則_.7函數(shù)f(x)在(-,+)上可導(dǎo),且,則_.8若曲線f(x)=x4-x在點(diǎn)P處的切線平行于直線3x-y=0,則點(diǎn)P坐標(biāo)為_(kāi).9函數(shù)f(x)=x-2sinx的單調(diào)遞增區(qū)間是_.10函數(shù)的導(dǎo)數(shù)為_(kāi).11若曲線在點(diǎn)處的切線的斜率為,求實(shí)數(shù)a.12.求sin290的近似值。13設(shè)0ba0時(shí),比較大?。簂n(x+1) _x.9.函數(shù)f(x

7、)=x5-5x4+5x3+1,x-1,2的最大值為_(kāi),最小值為_(kāi).10曲線y=e-x(x0)在點(diǎn)M(t,e-t)處的切線l與x軸、y軸所圍成的三角形面積為S(t),則S(t)的最大值為_(kāi).11若x0,求證:(x2-1)lnx(x-1)2.12函數(shù)y=f(x)在區(qū)間(0,+)內(nèi)可導(dǎo)。導(dǎo)函數(shù)是減函數(shù),且0,x0(0,+).y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0)處的切線方程,另設(shè)g(x)=kx+m,(1)用x0,f(x0),表示m;(2)證明:當(dāng)x(0,+)時(shí),g(x)f(x);(3)若關(guān)于x的不等式x2+1ax+b在(0,+)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿足的

8、關(guān)系。13.設(shè)各項(xiàng)為正的無(wú)窮數(shù)列xn滿足lnxn+,證明:xn1(nN+).五、聯(lián)賽一試水平訓(xùn)練題1設(shè)Mn=(十進(jìn)制)n位純小數(shù)0只取0或1(i=1,2,n-1),an=1,Tn是Mn中元素的個(gè)數(shù),Sn是Mn中所有元素的和,則_.2若(1-2x)9展開(kāi)式的第3項(xiàng)為288,則_.3設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x0時(shí),且g(-3)=0,則不等式f(x)g(x)0),若對(duì)任意xln(3a),ln(4a),不等式|m-f-1(x)|+ln0恒成立,則實(shí)數(shù)m取值范圍是_.9.已知函數(shù)f(x)=ln(1+x)-x,g(x)=xlnx,(1)求函數(shù)f(x)的最大值;(2)設(shè)0ab,證明:0g(a)+g(b)-(b-a)ln2.10.(1)設(shè)函數(shù)f(x)=xlog2x+(1-x)log2(1-x) (0x1),求f(x)的最小值;(2)設(shè)正數(shù)p1,p2,滿足p1+p2+p3+=1,求證:p1log2p1+p2 log2p2+log2-n.11.若函數(shù)gA(x)的定義域A=a,b),且gA(x)=,其中a,b為任意的正實(shí)數(shù),且ab,(1)求gA(x)的最小值;(2)討論gA(x)的單調(diào)性;(3)若x1Ik=k2,(k+1)2,x2Ik+1=(k+1)2,(k+2)2,證明:六、聯(lián)賽二試水平訓(xùn)練題1證明下列不等式:(1);(2)。2當(dāng)01.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!