2021高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 三角函數(shù)、解三角形 第7節(jié) 解三角形的實(shí)際應(yīng)用舉例教學(xué)案 文 北師大版

上傳人:彩*** 文檔編號(hào):105384293 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):10 大?。?19KB
收藏 版權(quán)申訴 舉報(bào) 下載
2021高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 三角函數(shù)、解三角形 第7節(jié) 解三角形的實(shí)際應(yīng)用舉例教學(xué)案 文 北師大版_第1頁(yè)
第1頁(yè) / 共10頁(yè)
2021高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 三角函數(shù)、解三角形 第7節(jié) 解三角形的實(shí)際應(yīng)用舉例教學(xué)案 文 北師大版_第2頁(yè)
第2頁(yè) / 共10頁(yè)
2021高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 三角函數(shù)、解三角形 第7節(jié) 解三角形的實(shí)際應(yīng)用舉例教學(xué)案 文 北師大版_第3頁(yè)
第3頁(yè) / 共10頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2021高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 三角函數(shù)、解三角形 第7節(jié) 解三角形的實(shí)際應(yīng)用舉例教學(xué)案 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2021高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 三角函數(shù)、解三角形 第7節(jié) 解三角形的實(shí)際應(yīng)用舉例教學(xué)案 文 北師大版(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第七節(jié)解三角形的實(shí)際應(yīng)用舉例最新考綱能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題(對(duì)應(yīng)學(xué)生用書(shū)第78頁(yè))測(cè)量中的幾個(gè)有關(guān)術(shù)語(yǔ)術(shù)語(yǔ)名稱(chēng)術(shù)語(yǔ)意義圖形表示仰角與俯角在目標(biāo)視線與水平視線所成的角中,目標(biāo)視線在水平視線上方的叫做仰角,目標(biāo)視線在水平視線下方的叫做俯角方位角從某點(diǎn)的指北方向線起按順時(shí)針?lè)较虻侥繕?biāo)方向線之間的夾角叫做方位角方位角的范圍是0360方向角相對(duì)于某正方向的水平角,如北偏東,即由正北方向順時(shí)針旋轉(zhuǎn)到達(dá)目標(biāo)方向,南偏西,即由正南方向順時(shí)針旋轉(zhuǎn)到達(dá)目標(biāo)方向,其他方向角類(lèi)似例:(1)北偏東:(2)南偏西:一、思考辨析(正確的打“”,錯(cuò)誤的打“”)(1)從A處

2、望B處的仰角為,從B處望A處的俯角為,則,的關(guān)系為180.()(2)俯角是鉛垂線與視線所成的角,其范圍為.()(3)方位角與方向角其實(shí)質(zhì)是一樣的,均是確定觀察點(diǎn)與目標(biāo)點(diǎn)之間的位置關(guān)系()(4)方位角大小的范圍是0,2),方向角大小的范圍一般是.()答案(1)(2)(3)(4)二、教材改編1如圖所示,設(shè)A,B兩點(diǎn)在河的兩岸,一測(cè)量者在A所在的同側(cè)河岸邊選定一點(diǎn)C,測(cè)出AC的距離為50 m,ACB45,CAB105后,就可以計(jì)算出A,B兩點(diǎn)的距離為_(kāi)m.50由正弦定理得,又B30,AB50(m)2.如圖,在山腳A測(cè)得山頂P的仰角為30,沿傾斜角為15的斜坡向上走a米到B,在B處測(cè)得山頂P的仰角為6

3、0,則山高h(yuǎn)_米a由題圖可得PAQ30,BAQ15,PAB中,PAB15,又PBC60,BPA(90)(90)30,PBa,PQPCCQPBsin asin asin 60asin 15a.3.如圖所示,D,C,B三點(diǎn)在地面的同一條直線上,DCa,從C,D兩點(diǎn)測(cè)得A點(diǎn)的仰角分別為60,30,則A點(diǎn)離地面的高度AB_.a由已知得DAC30,ADC為等腰三角形,ACa,所以在RtACB中,ABACsinACBa.(對(duì)應(yīng)學(xué)生用書(shū)第79頁(yè))考點(diǎn)1解三角形中的實(shí)際問(wèn)題利用正、余弦定理解決實(shí)際問(wèn)題的一般步驟(1)分析理解題意,分清已知與未知,畫(huà)出示意圖(2)建模根據(jù)已知條件與求解目標(biāo),把已知量與求解量盡量

4、集中在相關(guān)的三角形中,建立一個(gè)解斜三角形的數(shù)學(xué)模型(3)求解利用正弦定理或余弦定理有序地解三角形,求得數(shù)學(xué)模型的解(4)檢驗(yàn)檢驗(yàn)上述所求的解是否符合實(shí)際意義,從而得出實(shí)際問(wèn)題的解(1)江岸邊有一炮臺(tái)高30 m,江中有兩條船,船與炮臺(tái)底部在同一水平面上,由炮臺(tái)頂部測(cè)得俯角分別為45和60,而且兩條船與炮臺(tái)底部連線成30角,則兩條船相距_m.(2)如圖,高山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳 B處看索道AC,發(fā)現(xiàn)張角ABC120;從B處攀登400米到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角ADC150;從D處再攀登800米可到達(dá)C處,則索道AC的長(zhǎng)為_(kāi)米(1)10(2)400

5、(1)如圖,OMAOtan 4530(m),ONAOtan 303010(m),在MON中,由余弦定理得,MN10(m)(2)在ABD中,BD400米,ABD120.因?yàn)锳DC150,所以ADB30.所以DAB1801203030.由正弦定理,可得,所以,得AD400(米)在ADC中,DC800米,ADC150,由余弦定理得AC2AD2CD22ADCDcosADC(400)280022400800cos 150400213,解得AC400(米)故索道AC的長(zhǎng)為400米(1)實(shí)際測(cè)量中的常見(jiàn)問(wèn)題求AB圖形需要測(cè)量的元素解法求豎直高度底部可達(dá)ACB,BCa解直角三角形ABatan 底部不可達(dá)ACB

6、,ADB,CDa解兩個(gè)直角三角形AB求水平距離山兩側(cè)ACB,ACb,BCa用余弦定理AB河兩岸ACB,ABC,CBa用正弦定理AB河對(duì)岸ADC,BDC,BCD,ACD,CDa在ADC中,AC;在BDC中,BC;在ABC中,應(yīng)用余弦定理求AB(2)三角應(yīng)用題求解的關(guān)鍵是正確作圖(平面圖、立體圖),并且條件對(duì)應(yīng)好(仰角、俯角、方向角等)1.一船以每小時(shí)15 km的速度向東航行,船在A處看到一個(gè)燈塔B在北偏東60的方向上,行駛4 h后,船到達(dá)C處,看到這個(gè)燈塔在北偏東15的方向上,這時(shí)船與燈塔的距離為_(kāi)km.30如圖,由題意知,BAC30,ACB105,B45,AC60,由正弦定理得,BC30(km

7、)2.如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險(xiǎn),在原地等待營(yíng)救信息中心立即把消息告知在其南偏西30、相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向沿直線CB前往B處救援,則cos 的值為_(kāi)在ABC中,AB40,AC20,BAC120,由余弦定理得BC2AB2AC22ABACcos 1202 800,得BC20.由正弦定理,得,即sinACBsinBAC.由BAC120,知ACB為銳角,則cosACB.由ACB30,得cos cos(ACB30)cosACBcos 30sinACBsin 30.考點(diǎn)2平面幾何中的解三角形問(wèn)題與平面圖形有關(guān)的解三角形問(wèn)題的關(guān)鍵

8、及思路求解平面圖形中的計(jì)算問(wèn)題,關(guān)鍵是梳理?xiàng)l件和所求問(wèn)題的類(lèi)型,然后將數(shù)據(jù)化歸到三角形中,利用正弦定理或余弦定理建立已知和所求的關(guān)系具體解題思路如下:(1)把所提供的平面圖形拆分成若干個(gè)三角形,然后在各個(gè)三角形內(nèi)利用正弦、余弦定理求解;(2)尋找各個(gè)三角形之間的聯(lián)系,交叉使用公共條件,求出結(jié)果如圖,在平面四邊形ABCD中,ABC,ABAD,AB1.(1)若AC,求ABC的面積;(2)若ADC,CD4,求sinCAD.解(1)在ABC中,由余弦定理得,AC2AB2BC22ABBCcosABC,即51BC2BC,解得BC,所以ABC的面積SABCABBCsinABC1.(2)設(shè)CAD,在ACD中,

9、由正弦定理得,即,在ABC中,BAC,BCA,由正弦定理得,即,兩式相除,得,即4sin ,整理得sin 2cos .又因?yàn)閟in2cos21,所以sin ,即sinCAD.做題過(guò)程中,要用到平面幾何中的一些知識(shí)點(diǎn),如相似三角形的邊角關(guān)系、平行四邊形的一些性質(zhì),要把這些性質(zhì)與正弦、余弦定理有機(jī)結(jié)合,才能順利解決問(wèn)題如圖,在平面四邊形ABCD中,0DAB,AD2,AB3,ABD的面積為,ABBC.(1)求sinABD的值;(2)若BCD,求BC的長(zhǎng)解(1)因?yàn)锳BD的面積SADABsinDAB23sinDAB,所以sinDAB.又0DAB,所以DAB,所以cosDABcos .由余弦定理得BD,

10、由正弦定理得sinABD.(2)因?yàn)锳BBC,所以ABC,sinDBCsincosABD.在BCD中,由正弦定理可得CD.由余弦定理DC2BC22DCBCcosDCBBD2,可得3BC24BC50,解得BC或BC(舍去)故BC的長(zhǎng)為.考點(diǎn)3與三角形有關(guān)的最值(范圍)問(wèn)題解三角形問(wèn)題中,求解某個(gè)量(式子)的最值(范圍)的基本思路為:要建立所求量(式子)與已知角或邊的關(guān)系,然后把角或邊作為自變量,所求量(式子)的值作為函數(shù)值,轉(zhuǎn)化為函數(shù)關(guān)系,將原問(wèn)題轉(zhuǎn)化為求函數(shù)的值域問(wèn)題這里要利用條件中的范圍限制,以及三角形自身范圍限制,要盡量把角或邊的范圍(也就是函數(shù)的定義域)找完善,避免結(jié)果的范圍過(guò)大(1)(

11、2019安徽六安模擬)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,b4,則ABC的面積的最大值為()A4B2C2D.(2)(2019福建漳州二模)ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知3acos Abcos Cccos B,bc3,則a的最小值為()A1B. C2D3(1)A(2)B(1)在ABC中,(2ac)cos Bbcos C,(2sin Asin C)cos Bsin Bcos C,2sin Acos Bsin Ccos Bsin Bcos Csin(BC)sin A,cos B,即B,由余弦定理可得16a2c22accos Ba2c2ac2acac,ac16,當(dāng)且

12、僅當(dāng)ac時(shí)取等號(hào),ABC的面積Sacsin Bac4.故選A.(2)在ABC中,3acos Abcos Cccos B,3sin Acos Asin Bcos Csin Ccos Bsin(BC)sin A,即3sin Acos Asin A,又A(0,),sin A0,cos A.bc3,兩邊平方可得b2c22bc9,由b2c22bc,可得92bc2bc4bc,解得bc,當(dāng)且僅當(dāng)bc時(shí)等號(hào)成立,由a2b2c22bccos A,可得a2b2c2bc(bc)293,當(dāng)且僅當(dāng)bc時(shí)等號(hào)成立,a的最小值為.故選B.求解三角形中的最值、范圍問(wèn)題的兩個(gè)注意點(diǎn)(1)涉及求范圍的問(wèn)題,一定要搞清已知變量的范

13、圍,利用已知的范圍進(jìn)行求解,已知邊的范圍求角的范圍時(shí)可以利用余弦定理進(jìn)行轉(zhuǎn)化(2)注意題目中的隱含條件,如本例中銳角三角形的條件,又如ABC,0A,bcabc,三角形中大邊對(duì)大角等1.在鈍角ABC中 ,角A,B,C所對(duì)的邊分別為a,b,c,B為鈍角,若acos Absin A,則sin Asin C的最大值為()A.B.C1D.Bacos Absin A,由正弦定理可得,sin Acos Asin Bsin A,sin A0,cos Asin B,又B為鈍角,BA,sin Asin Csin Asin(AB)sin Acos 2Asin A12sin2A2,sin Asin C的最大值為.2在

14、ABC中,b,B60.(1)求ABC周長(zhǎng)l的范圍;(2)求ABC面積最大值解(1)lac,b23a2c22accos 60a2c2ac,(ac)23ac3,(ac)233ac3,ac2,當(dāng)僅僅當(dāng)ac時(shí),取“”,又ac,2l3.(2)b23a2c2ac2acac,ac3,當(dāng)且僅當(dāng)ac時(shí),取“”,SABCacsin B3sin 60,ABC面積最大值為.教師備選例題設(shè)ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,abtan A,且B為鈍角(1)證明:BA;(2)求sin Asin C的取值范圍解(1)證明:由abtan A及正弦定理,得,所以sin Bcos A,即sinBsin .因?yàn)锽為鈍角,所以A為銳角,所以A,則BA,即BA.(2)由(1)知,C(AB)2A0,所以A.于是sin Asin Csin Asinsin Acos 2A2sin2Asin A12.因?yàn)?A,所以0sin A,因此2.由此可知sin Asin C的取值范圍是.- 10 -

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!