2022年高三數(shù)學(xué)上學(xué)期第二次月考試題 理(VIII)
《2022年高三數(shù)學(xué)上學(xué)期第二次月考試題 理(VIII)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)上學(xué)期第二次月考試題 理(VIII)(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)上學(xué)期第二次月考試題 理(VIII) 一、選擇題(本大題共12個(gè)小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請把正確答案的代號(hào)填入答題區(qū)域中。) 1.已知集合 A={1,2,m2},B ={1,m}.若B ? A,則m =( ) A.0 B.2 C.0 或2 D.1 或2 2.“?x∈R,x2 + ax +1≥0成立”是“ |a |≤2”的( ) A.充分必要條件 B.必要而不充分條件 C.充分而不必要條件 D.既不充分也不必要條件 3.在等比
2、數(shù)列中,,,則公比等于( ) A. -2 B.1或-2 C.1 D.1或2 4.將函數(shù)圖象向左平移個(gè)長度單位,再把所得圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是( ) A. B. C. D. 5.二項(xiàng)式的展開式中,常數(shù)項(xiàng)的值是( ) A. B. C. D. 6.拋物線y=4ax2(a≠0)的焦點(diǎn)坐標(biāo)是( ?。? A.(0,a) B.(a,0) C.(0,) D.(,0) 7.當(dāng)n=5時(shí),執(zhí)行如圖所示的程序框圖,輸出的S值是
3、( ) A.7 B.10 C. 11 D.16 8.上圖是一個(gè)幾何體的三視圖,則該幾何體任意兩個(gè)頂點(diǎn)間距離的最大值是( ) A.4 B.5 C. D. 9.從分別寫有A,B,C,D,E的五張卡片中任取兩張,這兩張的字母順序恰好相鄰的概率是( ) A. B. C. D. 10.設(shè)均為實(shí)數(shù),且 則( ) 11.在中,若,且,則的周長為( ) A. B. C. D. 1
4、2.已知是等差數(shù)列的前n項(xiàng)和,且,給出下列五個(gè)命題: ①;②;③;④數(shù)列中的最大項(xiàng)為;⑤ A.5 B.4 C.3 D.1 二、填空題(本大題共4小題,每小題5分,共20分,將答案填在答題卡相應(yīng)的位置上.) 13.i 為虛數(shù)單位,計(jì)算= . 14.已知平面向量a , b滿足a = (1, ?1), (a + b) ⊥ (a ? b),那么|b|= . 15.若變量x,y滿足約束條件則的最大值是__ __. 16.中,角所對的邊分別為,下列命題正確的是______
5、__. ①若最小內(nèi)角為,則; ②若,則; ③存在某鈍角,有; ⑤若,則. ④若,則的最小角小于; 三、解答題(本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟.) 17.(本題滿分12 分)數(shù)列滿足,,. (I)設(shè),證明是等差數(shù)列; (II)求的通項(xiàng)公式. 18.(本題滿分12 分)如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100),據(jù)
6、此解答如下問題. (1)求全班人數(shù)及分?jǐn)?shù)在[80,100]之間的頻率; (2)現(xiàn)從分?jǐn)?shù)在[80,100]之間的試卷中任取 3 份分析學(xué)生失分情況,設(shè)抽取的試卷分?jǐn)?shù)在[90,100]的份數(shù)為 X ,求 X 的分布列和數(shù)學(xué)望期. 19.(本題滿分12 分)如圖,多面體ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的邊長為2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4. (Ⅰ)求證:BC⊥平面BDE; A C D E F B (Ⅱ)試在平面CDE上確定點(diǎn)P,使點(diǎn)P到直線DC、DE的距離相等,且AP與平面BEF
7、所成的角等于30°. 20.(本題滿分12 分)已知橢圓:的離心率為,右頂點(diǎn)是拋物線的焦點(diǎn).直線:與橢圓相交于,兩點(diǎn). (Ⅰ)求橢圓的方程; (Ⅱ)如果,點(diǎn)關(guān)于直線的對稱點(diǎn)在軸上,求的值. 21.(本題滿分12 分)已知是函數(shù)的極值點(diǎn),自然對數(shù)底數(shù). (I)求值,并討論的單調(diào)性; (II)是否存在,使得當(dāng)時(shí),不等式對任意正實(shí)數(shù)都成立?請說明理由. 請考生在第22、23、24三題中任選一題做答,如果多做,則按所做的第一題記分.做答時(shí)用2B鉛筆在答
8、題卡上把所選題目對應(yīng)題號(hào)右側(cè)的方框涂黑. 22.(本題滿分10 分)選修4-1:幾何證明選講 已知A,B,C,D為圓O上的四點(diǎn),直線DE為圓O的切線,D為切點(diǎn),AC∥DE,AC與BD相交于H點(diǎn). (I)求證:BD平分∠ABC; (II)若AB=4,AD=6,BD=8,求AH的長. 23.(本題滿分10 分)選修4-4:坐標(biāo)系與參數(shù)方程 在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為. (I)求的參數(shù)方程; (II)若點(diǎn)在曲線上,求的最大值和最小值. 24.(本題滿分10 分)
9、選修4-5:不等式選講 已知關(guān)于的不等式. (I)當(dāng)時(shí),求此不等式的解集; (II)若此不等式的解集為,求實(shí)數(shù)的取值范圍. 株洲市二中xx屆高三第二次月考 座位號(hào) 數(shù) 學(xué) (理)答 卷 一、選擇題(本大題共12小題,每小題5分,共60分) 題次 1 2 3 4 5 6 7 8 9 10 11 12 答案 二、 填空題(本大題共4小題,每小題5分,共20分) 13. ; 14. ; 15.
10、 ; 16. 。 三、解答題(本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟) 17.(12分) A C D E F B 18.(12分) 19.(12分) 20.(12分) 21.(12分) 選做題(10分) 株洲市二中xx年下學(xué)期高三年級第二次月考試卷 數(shù)學(xué)(理科)試題 時(shí)間:120分鐘 總分:150分 一、選擇題(本大題共12個(gè)小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請把正確答案的代號(hào)填入答題
11、區(qū)域中。) 1.已知集合 A={1,2,m2},B ={1,m}.若B ? A,則m = A.0 B.2 C.0 或2 D.1 或2 答案:C 2.“?x∈R,x2 + ax +1≥0成立”是“ |a |≤2”的 A.充分必要條件 B.必要而不充分條件 C.充分而不必要條件 D.既不充分也不必要條件 答案:A 3.在等比數(shù)列中,,,則公比等于 (A) -2 (B) 1或-2 (C) 1 (D)1或2 答案:B 4.將函數(shù)圖象向左平移個(gè)長度單位,再把所得圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不
12、變),所得圖象的函數(shù)解析式是 (A) (B) (D) 答案:C 5.二項(xiàng)式的展開式中,常數(shù)項(xiàng)的值是( ) A. B. C. D. 答案:A 6.拋物線y=4ax2(a≠0)的焦點(diǎn)坐標(biāo)是( ?。? A. (0,a) B. (a,0) C. (0,) D. (,0) 答案:C 7.當(dāng)n=5時(shí),執(zhí)行如圖所示的程序框圖,輸出的S值是 (A) 7 (B)10 (C) 11 (D) 16 答案:C 8.上圖是一個(gè)幾何體的三視圖,則該幾何體任意兩個(gè)頂點(diǎn)間距離的最大值是 (A) 4 (B) 5
13、 (C) (D) 答案:D 9. 從分別寫有A,B,C,D,E的五張卡片中任取兩張,這兩張的字母順序恰好相鄰的概率是( ) A. B. C. D. 答案:A 10、設(shè)均為實(shí)數(shù),且則 答案:A 11、在中,若,且,則的周長為( ) A. B. C. D. 答案:D 12、已知是等差數(shù)列的前n項(xiàng)和,且,給出下列五個(gè)命題: ①;②;③;④數(shù)列中的最大項(xiàng)為;⑤。 其中正確命題的個(gè)數(shù)是( ) A.5 B.4 C.3 D.1 答案:C 二、填空題(本大題共4小題,每小題5分,共20
14、分,將答案填在答題卡相應(yīng)的位置上.) 13.i 為虛數(shù)單位,計(jì)算= . 答案: 14.已知平面向量a , b滿足a = (1, ?1), (a + b) ⊥ (a ? b),那么|b|= . 答案: 15.若變量x,y滿足約束條件則的最大值是____. 16.中,角所對的邊分別為,下列命題正確的是________. ①若最小內(nèi)角為,則; ②若,則; ③存在某鈍角,有; ④若,則的最小角小于; ⑤若,則. 【答案】①④⑤ 【解析】對①,因?yàn)樽钚?nèi)角為,所以,,故正確;對②,構(gòu)造函數(shù),求導(dǎo)得,,當(dāng)時(shí),,即,則,所以,即在上單減,由②得,即,所以,故②
15、不正確;對③,因?yàn)?,則在鈍角中,不妨設(shè)為鈍角,有,故,③不正確;對④,由 ,即,而不共線,則,解得,則是最小的邊,故是最小的角,根據(jù)余弦定理,知,故④正確;對⑤,由得,所以,由②知,,即,又根據(jù)正弦定理知,即,所以,即.故①④⑤正確. 三、解答題(本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟.) 17.(本題滿分12 分) 數(shù)列滿足,,. (I)設(shè),證明是等差數(shù)列; (II)求的通項(xiàng)公式. 解:(I)由得 , ∴是首項(xiàng)為1,公差為2的等差數(shù)列; (II)由(I)得,于是, 當(dāng)時(shí), 而,∴的通項(xiàng)公式. 18.(本題滿分12
16、 分) 如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100),據(jù)此解答如下問題. (1)求全班人數(shù)及分?jǐn)?shù)在[80,100]之間的頻率; (2)現(xiàn)從分?jǐn)?shù)在[80,100]之間的試卷中任取 3 份分析學(xué)生失分情況,設(shè)抽取的試卷分?jǐn)?shù)在[90,100]的份數(shù)為 X ,求 X 的分布列和數(shù)學(xué)望期. 19.(本小題共12分) A C D E F B 如圖,多面體ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的邊長為2,直角
17、梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4. (Ⅰ)求證:BC⊥平面BDE; (Ⅱ)試在平面CDE上確定點(diǎn)P,使點(diǎn)P到 直線DC、DE的距離相等,且AP與平面BEF所成的角等于30°. (Ⅰ)證明:因?yàn)槠矫鍭BEF平面ABCD,EDAB. 所以ED平面ABCD 又因?yàn)锽C平面ABCD,所以EDBC. 在直角梯形ABCD中,由已知可得 BC2=8,BD2=8,CD2=16,所以,CD 2=BC2+BD2 ,所以,BDBC 又
18、因?yàn)镋DBD=D,所以BC平面BDE. (Ⅱ)如圖建立空間直角坐標(biāo)系Dxyz A C D E F B x z y 則 設(shè),則 令是平面BEF的一個(gè)法向量, 則 所以,令,得所以 因?yàn)锳P與平面BEF所成的角等于, 所以AP與所成的角為或 所以 所以 又因?yàn)椋曰? 當(dāng)時(shí),(*)式無解 當(dāng)時(shí),解得:
19、 所以,或. 20.(本小題滿分12分) 已知橢圓:的離心率為,右頂點(diǎn)是拋物線的焦點(diǎn).直線:與橢圓相交于,兩點(diǎn). (Ⅰ)求橢圓的方程; (Ⅱ)如果,點(diǎn)關(guān)于直線的對稱點(diǎn)在軸上,求的值. 解:(Ⅰ)拋物線, 所以焦點(diǎn)坐標(biāo)為,即, 所以. 又因?yàn)?,所以? 所以, 所以橢圓的方程為. (Ⅱ)設(shè),,因?yàn)?,?
20、所以,, 所以, 所以. 由,得(判別式), 得,, 即. 設(shè), 則中點(diǎn)坐標(biāo)為, 因?yàn)椋P(guān)于直線對稱, 所以的中點(diǎn)在直線上, 所以,解得,即. 由于,關(guān)于直線對稱,所以,所在直線與直線垂直, 所以 ,解得. 21.(本小題滿分12分) 已知是函數(shù)的極值點(diǎn),自然對數(shù)底數(shù). (I)求值,并討論的單調(diào)性; (II)是否存在,使得當(dāng)時(shí),不等式對任意正實(shí)數(shù)都成立?請說明理由. 解:(I),由題意,得,
21、 此時(shí),定義域是, 令, ∵,∴在是減函數(shù),且, 因此當(dāng)時(shí),,當(dāng)時(shí),, ∴在上是增函數(shù),在上是減函數(shù); (II)不等式可以化為, 設(shè),則, 即判斷是否存在,使在是減函數(shù), …………(8分) ∵, ∵,,, ∴在和上各有一個(gè)零點(diǎn),分別設(shè)為和,列表: 極小 極大 ∴在是增函數(shù),在是減函數(shù), ∵,∴存在這樣的值,且. …………(12分) 【注意】“當(dāng)時(shí),不等式對任意正實(shí)數(shù)都成立”這句話符合必修1中函數(shù)單調(diào)性定義,說明在是減函數(shù). 請考生在第(22)、(23)、(24)三題中任選一題做答,如
22、果多做,則按所做的第一題記分.做答時(shí)用2B鉛筆在答題卡上把所選題目對應(yīng)題號(hào)右側(cè)的方框涂黑. (22)(本小題滿分10分)選修4-1:幾何證明選講 已知A,B,C,D為圓O上的四點(diǎn),直線DE為圓O的切線,D為切點(diǎn),AC∥DE,AC與BD相交于H點(diǎn). (I)求證:BD平分∠ABC; (II)若AB=4,AD=6,BD=8,求AH的長. 證明:(I), 又切圓于點(diǎn),, ,而, ,即BD平分∠ABC; (II)由(I)知,又, 又為公共角, ∴與相似,, ∵AB=4,AD=6,BD=8,∴AH=3. (23)(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方
23、程 在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為. (I)求的參數(shù)方程; (II)若點(diǎn)在曲線上,求的最大值和最小值. 解:(I)的極坐標(biāo)方程化為, ∴的直角坐標(biāo)方程是, 即, 的參數(shù)方程是,是參數(shù); (II)由(是參數(shù))得到 ∴的最大值是6,最小值是2. (24)(本小題滿分10分)選修4-5:不等式選講 已知關(guān)于的不等式. (I)當(dāng)時(shí),求此不等式的解集; (II)若此不等式的解集為,求實(shí)數(shù)的取值范圍. 解:(I)當(dāng)時(shí),此不等式為,解得, ∴不等式的解集為; (II)∵, ∴原不等式解集為等價(jià)于,∵,∴, ∴實(shí)數(shù)的取值范圍為.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中西方家庭教育的對比ppt課件
- 《運(yùn)籌學(xué)教程》第五版運(yùn)籌學(xué)6對策論矩陣對策課件
- (部編版)統(tǒng)編版四年級語文下冊第2課《鄉(xiāng)下人家》ppt課件
- 全等三角形1--公開課一等獎(jiǎng)ppt課件
- 《會(huì)跳舞樹葉娃娃》課件
- 9兒童詩兩首_人教版五年級的語文下冊課件
- 綠色植物是食物之源(我的課件)0
- 河南專版2022春八年級語文下冊第四單元16慶祝奧林匹克運(yùn)動(dòng)復(fù)興25周年習(xí)題課件新人教版
- 全國xx杯說課大賽機(jī)械類一等獎(jiǎng)作品:鉗工車模的制作說課ppt課件
- 六年級下冊數(shù)學(xué)ppt課件-總復(fù)習(xí)(1)數(shù)的認(rèn)識(shí)-整數(shù)∣北師大版
- 牛頓第二定律優(yōu)秀完整公開課ppt課件
- 調(diào)脂與卒中防治課件
- 點(diǎn)到平面的距離課件
- 聚焦新醫(yī)改形勢下的醫(yī)院發(fā)展戰(zhàn)略
- 四肢血管超聲基礎(chǔ)