《2022年高考數(shù)學(xué)總復(fù)習(xí) 專題一 函數(shù)與導(dǎo)數(shù)練習(xí) 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)總復(fù)習(xí) 專題一 函數(shù)與導(dǎo)數(shù)練習(xí) 理(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)總復(fù)習(xí) 專題一 函數(shù)與導(dǎo)數(shù)練習(xí) 理1函數(shù)y定義域是()A1,) B.C. D.2(xx年廣東中山二模)函數(shù)f(x)x2bxa的圖象如圖Z11,則函數(shù)g(x)lnxf(x)的零點(diǎn)所在的區(qū)間是()圖Z11A. B.C(1,2) D(2,3)3函數(shù)f(x)exx(e為自然對(duì)數(shù)的底數(shù))在區(qū)間1,1上的最大值是()A1 B1Ce1 De14已知函數(shù)f(x)的導(dǎo)函數(shù)為f(x),且滿足f(x)2xf(1)x2,則f(1)()A1 B2C1 D25(xx年遼寧)當(dāng)x2,1時(shí),不等式ax3x24x30恒成立,則實(shí)數(shù)a的取值范圍是()A5,3 B.C6,2 D4,36(xx年廣東)若曲線ykxl
2、nx在點(diǎn)(1,k)處的切線平行于x軸,則k_.7(xx年四川)設(shè)f(x)是定義在R上的周期為2的函數(shù),當(dāng)x1,1)時(shí),f(x)則f_.8(xx年湖南)若f(x)ln(e3x1)ax是偶函數(shù),則a_.9(xx年山東)設(shè)函數(shù)f(x)alnx,其中a為常數(shù)(1)若a0,求曲線yf(x)在點(diǎn)(1,f(1)處的切線方程;(2)討論函數(shù)f(x)的單調(diào)性10(xx年新課標(biāo))已知函數(shù)f(x)x33x2ax2,曲線yf(x)在點(diǎn)(0,2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為2.(1)求a;(2)證明:當(dāng)k1時(shí),曲線yf(x)與直線ykx2只有一個(gè)交點(diǎn)專題一函數(shù)與導(dǎo)數(shù)1D2B解析:由題意,得f(0)a(0,1),f(1)
3、1ba0,ba1(1,2),g(x)lnx2xb,gln2bln4b0,gln2bln21b0,則g(x)的零點(diǎn)所在的區(qū)間是.3D解析:f(x)ex1,當(dāng)x0時(shí),f(x)0,f(x)為增函數(shù);當(dāng)x0時(shí),f(x)0,f(x)為減函數(shù)x1,1時(shí),f(x)minf(0)e001.又f(1)12.51,最大值為e1.4B解析:f(x)2f(1)2x.令x1,得f(1)2f(1)2.f(1)2.故選B.5C解析:不等式ax3x24x30變形為ax3x24x3.當(dāng)x0時(shí),03恒成立,故實(shí)數(shù)a的取值范圍是R;當(dāng)x(0,1時(shí),a恒成立,記f(x),f(x)0成立,故函數(shù)f(x)單調(diào)遞增,f(x)maxf(1)
4、6,故a6;當(dāng)x2,0)時(shí),a恒成立,記f(x),f(x),當(dāng)x2,1)時(shí),f(x)0.故f(x)minf(1)2,故a2.綜上所述, 實(shí)數(shù)a的取值范圍是6,261解析:yx1k10,k1.71解析:f(x)是定義在R上的周期為2的函數(shù),ff4221.8解析:f(x)是偶函數(shù),有f(x)f(x),即ln(e3x1)axln(e3x1)ax.則lnln(e3x1)2ax,ln(e3x1)ln(e3x)ln(e3x1)2ax,得3x2ax,a.9解:(1)由題意知,若a0,則f(x),x(0,),此時(shí)f(x).可得f(1).又f(1)0,曲線yf(x)在(1,f(1)處的切線方程為y0(x1),即
5、x2y10.(2)函數(shù)f(x)的定義域?yàn)?0,),f(x).當(dāng)a0時(shí),f(x)0,函數(shù)f(x)在(0,)上單調(diào)遞增;當(dāng)a0時(shí),令g(x)ax2(2a2)xa,由于(2a2)24a24(2a1),當(dāng)a時(shí),0,f(x)0,函數(shù)f(x)在(0,)上單調(diào)遞減;當(dāng)a時(shí),0,g(x)0,f(x)0,函數(shù)f(x)在(0,)上單調(diào)遞減;當(dāng)a0,設(shè)x1,x2(x10,當(dāng)x(0,x1)時(shí),g(x)0,f(x)0,f(x)0,函數(shù)f(x)單調(diào)遞增;當(dāng)x(x2,)時(shí),g(x)0,f(x)0,函數(shù)f(x)單調(diào)遞減綜上所述,當(dāng)a0時(shí),函數(shù)f(x)在(0,)上單調(diào)遞增;當(dāng)a時(shí),函數(shù)f(x)在(0,)上單調(diào)遞減;當(dāng)a0.當(dāng)x0時(shí),g(x)3x26x1k0,g(x)單調(diào)遞增,g(1)k10時(shí),令h(x)x33x24,則g(x)h(x)(1k)xh(x)h(x)3x26x3x(x2),h(x)在(0,2)單調(diào)遞減,在(2,)單調(diào)遞增,所以g(x)h(x)h(2)0.所以g(x)0在(0,)沒(méi)有實(shí)根綜上所述,g(x)0在R有唯一實(shí)根,即曲線yf(x)與直線ykx2只有一個(gè)交點(diǎn)