2022年高中數(shù)學 1.1.1 算法的概念教案2 新人教B版必修3

上傳人:xt****7 文檔編號:105108091 上傳時間:2022-06-11 格式:DOC 頁數(shù):2 大?。?4.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高中數(shù)學 1.1.1 算法的概念教案2 新人教B版必修3_第1頁
第1頁 / 共2頁
2022年高中數(shù)學 1.1.1 算法的概念教案2 新人教B版必修3_第2頁
第2頁 / 共2頁

最后一頁預覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年高中數(shù)學 1.1.1 算法的概念教案2 新人教B版必修3》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學 1.1.1 算法的概念教案2 新人教B版必修3(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學 1.1.1 算法的概念教案2 新人教B版必修3 教學目標: (1)了解算法的含義,體會算法的思想。(2)能夠用自然語言敘述算法。(3)掌握正確的算法應(yīng)滿足的要求。(4)會寫出解線性方程(組)的算法。(5)會寫出一個求有限整數(shù)序列中的最大值的算法。 教學重點: 算法的含義、解二元一次方程組和判斷一個數(shù)為質(zhì)數(shù)的算法設(shè)計。. 教學難點: 把自然語言轉(zhuǎn)化為算法語言。. 學法:1、寫出的算法,必須能解決一類問題(如:判斷一個整數(shù)n(n>1)是否為質(zhì)數(shù);求任意一個方程的近似解;……),并且能夠重復使用。2、要使算法盡量簡單、步驟盡量少。3、要保證算法正確,且計算機能

2、夠執(zhí)行,如:讓計算機計算1×2×3×4×5是可以做到的,但讓計算機去執(zhí)行“倒一杯水”“替我理發(fā)”等則是做不到的。 教學過程 一、章頭圖體現(xiàn)了中國古代數(shù)學與現(xiàn)代計算機科學的聯(lián)系,它們的基礎(chǔ)都是“算法”。 算法作為一個名詞,在中學教科書中并沒有出現(xiàn)過,我們在基礎(chǔ)教育階段還沒有接觸算法概念。但是我們卻從小學就開始接觸算法,熟悉許多問題的算法。如,做四則運算要先乘除后加減,從里往外脫括弧,豎式筆算等都是算法,至于乘法口訣、珠算口訣更是算法的具體體現(xiàn)。廣義地說,算法就是做某一件事的步驟或程序。菜譜是做菜肴的算法,洗衣機的使用說明書是操作洗衣機的算法,歌譜是一首歌曲的算法。在數(shù)學中,主要研究計算機能

3、實現(xiàn)的算法,即按照某種機械程序步驟一定可以得到結(jié)果的解決問題的程序。(古代的計算工具:算籌與算盤. 20世紀最偉大的發(fā)明:計算機,計算機是強大的實現(xiàn)各種算法的工具。) 例1:解二元一次方程組: 分析:解二元一次方程組的主要思想是消元的思想,有代入消元和加減消元兩種消元的方法,下面用加減消元法寫出它的求解過程. 解:第一步:② - ①×2,得: 5y=3; ③ 第二步:解③得 ; 第三步:將代入①,得 . 學生探究:對于一般的二元一次方程組來說,上述步驟應(yīng)該怎樣進一步完善? 老師評析:本題的算法是由加減消元法求解的,這個算法也適合一般的二元

4、一次方程組的解法。下面寫出求方程組的解的算法: 例2:寫出求方程組的解的算法. 解:第一步:②×a1 - ①×a2,得: ③ 第二步:解③得 ;第三步:將代入①,得 算法概念: 在數(shù)學上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成. 2. 算法的特點: (1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的. (2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當是模棱兩可. (3)順序性與正確性:算法從初始步驟開始,分為若干明確

5、的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題. (4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法. (5)普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決. 例題講評: 例3、任意給定一個大于1的整數(shù)n,試設(shè)計一個程序或步驟對n是否為質(zhì)數(shù)做出判斷. 分析:(1)質(zhì)數(shù)是只能被1和自身整除的大于1的整數(shù). (2)要判斷一個大于1的整數(shù)n是否為質(zhì)數(shù),只要根據(jù)質(zhì)數(shù)的定義,用比這個整數(shù)小的數(shù)去除n,如果它只能被1和

6、本身整除,而不能被其它整數(shù)整除,則這個數(shù)便是質(zhì)數(shù). 解:算法:第一步:判斷n是否等于2.若n=2,則n是質(zhì)數(shù);若n>2,則執(zhí)行第二步. 第二步:依次從2~(n-1)檢驗是不是n的因數(shù),即整除n的數(shù).若有這樣的數(shù),則n不是質(zhì)數(shù);若沒有這樣的數(shù),則n是質(zhì)數(shù). 說明:本算法是用自然語言的形式描述的.設(shè)計算法一定要做到以下要求: (1)寫出的算法必須能解決一類問題,并且能夠重復使用.(2)要使算法盡量簡單、步驟盡量少. (3)要保證算法正確,且計算機能夠執(zhí)行. 利用TI-voyage200圖形計算器演示:(學生已經(jīng)被吸引住了) 例4、.用二分法設(shè)計一個求方程的近似根的算法. 分析:該算

7、法實質(zhì)是求的近似值的一個最基本的方法. 解:設(shè)所求近似根與精確解的差的絕對值不超過0.005,算法: 第一步:令.因為,所以設(shè)x1=1,x2=2. 第二步:令,判斷f(m)是否為0.若是,則m為所求;若否,則繼續(xù)判斷大于0還是小于0. 第三步:若,則x1=m;否則,令x2=m. 第四步:判斷是否成立?若是,則x1、x2之間的任意值均為滿足條件的近似根;若否,則返回第二步. 練習1:寫出解方程x2-2x-3=0的一個算法。 練習2、求1×3×5×7×9×11的值,寫出其算法。 練習3、有藍和黑兩個墨水瓶,但現(xiàn)在卻錯把藍墨水裝在了黑墨水瓶中,黑墨水錯裝在了藍墨水瓶中,要求將其互換,請你設(shè)計算法解決這一問題。 小結(jié) 1、算法概念和算法的基本思想 (1)算法與一般意義上具體問題的解法的聯(lián)系與區(qū)別;(2)算法的五個特征。 2、利用算法的思想和方法解決實際問題,能寫出一此簡單問題的算法 3、兩類算法問題 (1)數(shù)值性計算問題,如:解方程(或方程組),解不等式(或不等式組),套用公式判斷性的問題,累加,累乘等一類問題的算法描述,可通過相應(yīng)的數(shù)學模型借助一般數(shù)學計算方法,分解成清晰的步驟,使之條理化即可。(2)非數(shù)值性計算問題,如:排序、查找、變量變換、文字處理等需先建立過程模型,通過模型進行算法設(shè)計與描述。 作業(yè): (課本第4頁練習)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!