《八年級(jí)數(shù)學(xué)下學(xué)期第一次月考試題 北師大版(II)》由會(huì)員分享,可在線閱讀,更多相關(guān)《八年級(jí)數(shù)學(xué)下學(xué)期第一次月考試題 北師大版(II)(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、八年級(jí)數(shù)學(xué)下學(xué)期第一次月考試題 北師大版(II)
一、選擇題:(本大題共6小題,每小題3分,共18分)
1.若m>n,下列不等式不一定成立的是( ?。?
A.m+2>n+2 B.2m>2n C.> D.m2>n2
2.已知等腰三角形的兩邊長(zhǎng)分別為5和6,則這個(gè)等腰三角形的周長(zhǎng)為( ?。?
A.11 B.16 C.17 D.16或17
3.等腰三角形一腰上的高與底邊的夾角為40°,則頂角的度數(shù)為( ?。?
A.40° B.80° C.100° D.80°或100°
2、
4.不等式組的解集在數(shù)軸上可表示為( ?。?
A. B.
C. D.
5.如圖,三條公路把A、B、C三個(gè)村莊連成一個(gè)三角形區(qū)域,某地區(qū)決定在這個(gè)三角形區(qū)域內(nèi)修建一個(gè)集貿(mào)市場(chǎng),要使集貿(mào)市場(chǎng)到三個(gè)條公路的距離相等,則這個(gè)集貿(mào)市場(chǎng)應(yīng)建在( ?。?
A.在AC、BC兩邊高線的交點(diǎn)處 B.在AC、BC兩邊中線的交點(diǎn)處
C.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處 D.在AC、BC兩邊垂直平分線的交點(diǎn)處
第5題圖
3、 第6題圖
6.已知:如圖,點(diǎn)D,E分別在△ABC的邊AC和BC上,AE與BD相交于點(diǎn)F,給出下面四個(gè)條件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,從這四個(gè)條件中選取兩個(gè),不能判定△ABC是等腰三角形的是( ?。?
A.①② B.①④ C.②③ D.③④
二、填空題(本大題共6小題,每小題3分,共18分.)
7.用不等式表示x與5的差不小于4: _______ .
8.關(guān)于x的方程2x+3k=1的解是負(fù)數(shù),則k的取值范圍是_______.
9.如圖,在△ABC中,∠C=90°,點(diǎn)E是AC上的點(diǎn),
4、且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,則AE等于_______.
第9題圖
10.不等式2(x-1)>3x-4的非負(fù)整數(shù)解為_(kāi)______.
11.如圖,等腰△ABC的周長(zhǎng)為21,底邊BC=5,腰AB的垂直平分線交AB于D,交AC于E,連接BE,則△BEC的周長(zhǎng)為_(kāi)______.
12.在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)A(1,2),在y軸的正半軸上確定點(diǎn)P,使△AOP為等腰三角形,則點(diǎn)P的坐標(biāo)為_(kāi)______.
三、解答題(本大題共5小題,每小題6分
5、,共30分)
13.(6分)解不等式2(x+1)﹣1≥3x+2,并把它的解集在數(shù)軸上表示出來(lái).
14. (6分)
15. (6分)已知:如圖,D,E分別是等邊三角形ABC的兩邊AB,AC上的點(diǎn),且AD=CE,
求證:CD=BE.
16. (6分)當(dāng)x取何值時(shí),代數(shù)式2x-5的值不小于代數(shù)式-x+1的值?
17. (6分)如圖,在△ABC中,∠C=90°,BD是∠ABC的平分線,若AC=12,AD=8,求點(diǎn)D到AB的距離。
四、(本大題共4小題,每小題8分,共32分)
18.(8分)如圖,
6、在△ABC中,AD平分∠BAC,點(diǎn)D是BC的中點(diǎn),DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
求證:△ABC是等腰三角形.
19.(8分)如圖,在△ABC中,BP平分∠ABC,CP平分∠ACB,且PD∥AB ,
PE∥AC, BC=5, 求△PDE的周長(zhǎng)。
20.(8分)某乳品公司向某地運(yùn)輸一批牛奶,由鐵路運(yùn)輸每千克需運(yùn)費(fèi)0.60元,由公路運(yùn)輸,每千克需運(yùn)費(fèi)0.30元,另需補(bǔ)助600元
(1)設(shè)該公司運(yùn)輸?shù)倪@批牛奶為x千克,選擇鐵路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y1元,選擇公路運(yùn)輸時(shí),所需運(yùn)費(fèi)為y2元,請(qǐng)分別寫(xiě)出y1、y2與x之間的關(guān)系式;
(2)若公司只支出運(yùn)費(fèi)1500
7、元,則選用哪種運(yùn)輸方式運(yùn)送的牛奶多?若公司運(yùn)送1500千克牛奶,則選用哪種運(yùn)輸方式所需用較少?
21.(8分)如圖,AD∥BC,∠D=90°.
(1)如圖1,若∠DAB的平分線與∠CBA的平分線交于點(diǎn)P,試問(wèn):點(diǎn)P是線段CD的中點(diǎn)嗎?為什么?
(2)如圖2,如果P是DC的中點(diǎn),BP平分∠ABC,∠CPB=35°,求∠PAD的度數(shù)為多少?
五、(本大題共1小題,共10分)
22、如圖,在長(zhǎng)方形ABCO中,點(diǎn)B(8,6),
(1) 點(diǎn)M在邊AB上,若△OCM是等腰三角形,試求M的坐標(biāo);
(2)點(diǎn)P是線段BC上一動(dòng)點(diǎn),0≤PC≤6,。已知點(diǎn)D
8、在第一象限,是直線
y= 2x-6上的一點(diǎn),若△ADP是等腰三角形,且∠ADP=900,請(qǐng)求出點(diǎn)D的坐標(biāo)。
六、(本大題共1小題,共12分)
23..(12分)在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P是線段CB
9、延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫(xiě)出DE、BF、BP三者之間的數(shù)量關(guān)系.
參考答案
1.D;2.D;3.B;4.C;5.C;6.C;
7.x-5≥4;8. k>;9. 6cm;10. 0或1; 11.13; 12.( 0,)、(0,4)、(0, );
13.解:去括號(hào),得 2x+2-1≥3x+2
移項(xiàng),得 2x-3x≥2-2+1
合并同類項(xiàng),得-x≥1
系數(shù)化為1,得x≤-1
14.
15. ∵△ABC是等邊三角形∴AC=BC, ∠A=∠BCA
又∵
10、AD=CE∴△ACD≌△CBE(SAS)
∴CD=BE
16. 解: ∵2x-5≥-x+1∴2x+x≥1+5∴3x≥6 ∴x≥2
17.解:作DE⊥AB于點(diǎn)E,
∵BD平分∠ABC,DE⊥AB,∠C=90°,∴DE=DC=AC-AD=12-8=4,
18.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,
∵D是BC的中點(diǎn),∴BD=CD
在Rt△BDE和Rt△CDF中
∵DE=DF,DB=DC,∴Rt△BDE≌Rt△CDF(HL)
∴∠B=∠C∴AB=AC∴△ABC是等腰三角形
19.
解:∵ BP平分∠ABC,CP平分∠
11、ACB, ∴∠ABP=∠PBD, ∠ACP=∠PCE,
又∵PD∥AB, PE∥AC, ∴∠ABP=∠BPD, ∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE
∴BD=PD,CE=PE
∴△PDE的周長(zhǎng)=PD+DE+PE=BD+DE+EC=BC=5
20.(1),
(2),解得,;,解得,
公路方式運(yùn)輸多;
元。元。
鐵路方式運(yùn)輸需用少。
21. 解答:答:點(diǎn)P是線段CD的中點(diǎn).
證明如下:過(guò)點(diǎn)P作PE⊥AB于E,
∵AD∥BC,PD⊥CD于D,
∴PC⊥BC,
∵∠DAB的平分線與∠CBA的平分線交于點(diǎn)P,
∴PD=PE,PC=PE,
12、
∴PC=PD,
∴點(diǎn)P是線段CD的中點(diǎn).
(2)35°
22.解:(1)∵DE垂直平分AB,∴AE=BE, ∴∠BAE=∠B,同理可得:∠CAN=∠C
∴∠EAN=∠BAC—∠BAE-∠CAN=∠BAC-(∠B+∠C)
∠B+∠C=180°-∠BAC=80°∴∠EAN=∠BAC-(∠B+∠C)= 100°-80°=20°
(2) ∵DE垂直平分AB,∴AE=BE, ∴∠BAE=∠B,同理可得:∠CAN=∠C
∴∠EAN=∠BAE+∠CAN-∠BAC = (∠B+∠C)- ∠BAC
∠B+∠C=180°-∠BAC=110°∴∠EAN= (∠B+∠C)- ∠BAC = 110
13、°-70°=40°
(3)當(dāng)a<90°時(shí),∠EAN =180°-2a;
當(dāng)a>90°時(shí),∠EAN =2a-180°;
23. (1)∵∠ACB=90°,∠A=30°,∴∠B=60°。
∵點(diǎn)D是AB的中點(diǎn),∴DB=DC,∴△DCB為等邊三角形。
∵DE⊥BC,∴DE=BC。
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,根據(jù)“SAS”可判斷△DCP≌△DBF,則CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;
BF+BP=DE。證明如下:
∵線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,∴∠PDF=60°,DP=DF。
∵∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB。,∴∠CDP=∠BDF。
在△DCP和△DBF中,∵DC=DB,∠CDP=∠BDF,DP=DF,
∴△DCP≌△DBF(SAS),∴CP=BF。
∵CP=BC﹣BP,∴BF+BP=BC。
∵由(1)DE=BC,∴BC=DE?!郆F+BP=DE。
(3)與(2)一樣可證明△DCP≌△DBF,∴CP=BF。
∵CP=BC+BP,∴BF﹣BP=BC=DE?!?
補(bǔ)全圖形如圖,DE、BF、BP三者之間的數(shù)量關(guān)系為BF﹣BP=DE。