《2022年高一數(shù)學(xué) 2.2.1《對數(shù)函數(shù)》教案人教A版必修1》由會員分享,可在線閱讀,更多相關(guān)《2022年高一數(shù)學(xué) 2.2.1《對數(shù)函數(shù)》教案人教A版必修1(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高一數(shù)學(xué) 2.2.1《對數(shù)函數(shù)》教案人教A版必修1
一.教學(xué)目標:
1.知識技能:
①理解對數(shù)的概念,了解對數(shù)與指數(shù)的關(guān)系;
②理解和掌握對數(shù)的性質(zhì);
③掌握對數(shù)式與指數(shù)式的關(guān)系 .
2. 過程與方法:
通過與指數(shù)式的比較,引出對數(shù)定義與性質(zhì) .
3.情感、態(tài)度、價值觀
(1)學(xué)會對數(shù)式與指數(shù)式的互化,從而培養(yǎng)學(xué)生的類比、分析、歸納能力.
(2)通過對數(shù)的運算法則的學(xué)習(xí),培養(yǎng)學(xué)生的嚴謹?shù)乃季S品質(zhì) .
(3)在學(xué)習(xí)過程中培養(yǎng)學(xué)生探究的意識.
(4)讓學(xué)生理解平均之間的內(nèi)在聯(lián)系,培養(yǎng)分析、解決問題的能力.
二.重點與難點:
(1)重點:對數(shù)式與指數(shù)式的互化及對
2、數(shù)的性質(zhì)
(2)難點:推導(dǎo)對數(shù)性質(zhì)的
三.學(xué)法與教具:
(1)學(xué)法:講授法、討論法、類比分析與發(fā)現(xiàn)
(2)教具:投影儀
四.教學(xué)過程:
1.提出問題
思考:(P72思考題)中,哪一年的人口數(shù)要達到10億、20億、30億……,該如何解決?
即:在個式子中,分別等于多少?
象上面的式子,已知底數(shù)和冪的值,求指數(shù),這就是我們這節(jié)課所要學(xué)習(xí)的對數(shù)(引出對數(shù)的概念).
1、對數(shù)的概念
一般地,若,那么數(shù)叫做以a為底N的對數(shù),記作
叫做對數(shù)的底數(shù),N叫做真數(shù).
舉例:如:,讀作2是以4為底,16的對數(shù).
,則,讀作是以4為底2的對數(shù).
提問:你們還能找到那
3、些對數(shù)的例子
2、對數(shù)式與指數(shù)式的互化
在對數(shù)的概念中,要注意:
(1)底數(shù)的限制>0,且≠1
(2)
指數(shù)式對數(shù)式
冪底數(shù)←→對數(shù)底數(shù)
指 數(shù)←→對數(shù)
冪 ←N→真數(shù)
說明:對數(shù)式可看作一記號,表示底為(>0,且≠1),冪為N的指數(shù)工表示方程(>0,且≠1)的解. 也可以看作一種運算,即已知底為(>0,且≠1)冪為N,求冪指數(shù)的運算. 因此,對數(shù)式又可看冪運算的逆運算.
例題:
例1(P73例1)
將下列指數(shù)式化為對數(shù)式,對數(shù)式化為指數(shù)式.
(1)54=645 (2) (3)
(4) (5) (6)
注:(5)、
4、(6)寫法不規(guī)范,等到講到常用對數(shù)和自然對數(shù)后,再向?qū)W生說明.
(讓學(xué)生自己完成,教師巡視指導(dǎo))
鞏固練習(xí):P74 練習(xí) 1、2
3.對數(shù)的性質(zhì):
提問:因為>0,≠1時,
則 由1、0=1 2、1= 如何轉(zhuǎn)化為對數(shù)式
②負數(shù)和零有沒有對數(shù)?
③根據(jù)對數(shù)的定義,=?
(以上三題由學(xué)生先獨立思考,再個別提問解答)
由以上的問題得到
① (>0,且≠1)
② ∵>0,且≠1對任意的力,常記為.
恒等式:=N
4、兩類對數(shù)
① 以10為底的對數(shù)稱為常用對數(shù),常記為.
② 以無理數(shù)e=2.71828…為底的對數(shù)稱為自然對數(shù),常
5、記為.
以后解題時,在沒有指出對數(shù)的底的情況下,都是指常用對數(shù),如100的對數(shù)等于2,即.
說明:在例1中,.
例2:求下列各式中x的值
(1) (2) (3) (4)
分析:將對數(shù)式化為指數(shù)式,再利用指數(shù)冪的運算性質(zhì)求出x.
解:(1)
(2)
(3)
(4)
所以
課堂練習(xí):P74 練習(xí)3、4
補充練習(xí):1. 將下列指數(shù)式與對數(shù)式互化,有的求出的值 .
(1) (2) (3)
(4) (5) (6)
2.求且不等于1,N>0).
3.計算的值.
4.歸納小結(jié):對數(shù)
6、的定義
>0且≠1)
1的對數(shù)是零,負數(shù)和零沒有對數(shù)
對數(shù)的性質(zhì) >0且≠1
作業(yè):P86 習(xí)題 2.2 A組 1、2
P88 B組 1
對數(shù)(第二課時)
一.教學(xué)目標:
1.知識與技能
①通過實例推導(dǎo)對數(shù)的運算性質(zhì),準確地運用對數(shù)運算性質(zhì)進行運算,求值、化簡,并掌握化簡求值的技能.
②運用對數(shù)運算性質(zhì)解決有關(guān)問題.
③培養(yǎng)學(xué)生分析、綜合解決問題的能力.
培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的意識和科學(xué)分析問題的精神和態(tài)度.
2. 過程與方法
①讓學(xué)生經(jīng)歷并推理出對
7、數(shù)的運算性質(zhì).
②讓學(xué)生歸納整理本節(jié)所學(xué)的知識.
3. 情感、態(tài)度、和價值觀
讓學(xué)生感覺對數(shù)運算性質(zhì)的重要性,增加學(xué)生的成功感,增強學(xué)習(xí)的積極性.
二.教學(xué)重點、難點
重點:對數(shù)運算的性質(zhì)與對數(shù)知識的應(yīng)用
難點:正確使用對數(shù)的運算性質(zhì)
三.學(xué)法和教學(xué)用具
學(xué)法:學(xué)生自主推理、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標.
教學(xué)用具:投影儀
四.教學(xué)過程
1.設(shè)置情境
復(fù)習(xí):對數(shù)的定義及對數(shù)恒等式
(>0,且≠1,N>0),
指數(shù)的運算性質(zhì).
2.講授新課
探究:在上課中,我們知道,對數(shù)式可看作指數(shù)運算的逆運算,你能從指數(shù)與對數(shù)的關(guān)系以及指數(shù)運算性質(zhì),得
8、出相應(yīng)的對數(shù)運算性質(zhì)嗎?如我們知道,那如何表示,能用對數(shù)式運算嗎?
如:于是 由對數(shù)的定義得到
即:同底對數(shù)相加,底數(shù)不變,真數(shù)相乘
提問:你能根據(jù)指數(shù)的性質(zhì)按照以上的方法推出對數(shù)的其它性質(zhì)嗎?
(讓學(xué)生探究,討論)
如果>0且≠1,M>0,N>0,那么:
(1)
(2)
(3)
證明:
(1)令
則:
又由
即:
(3)
即
當=0時,顯然成立.
提問:1. 在上面的式子中,為什么要規(guī)定>0,且≠1,M>0,N>0?
1. 你能用自己的語言分別表述出以上三個等式嗎?
例題:1.
9、判斷下列式子是否正確,>0且≠1,>0且≠1,>0,>,則有
(1) (2)
(3) (4)
(5) (6)
(7)
例2:用,,表示出(1)(2)小題,并求出(3)、(4)小題的值.
(1) (2) (3) (4)
分析:利用對數(shù)運算性質(zhì)直接計算:
(1)
(2)
=
(3)
(4)
點評:此題關(guān)鍵是要記住對數(shù)運算性質(zhì)的形式,要求學(xué)生不要記住公式.
讓學(xué)生完成P79練習(xí)的第1,2,3題
提出問題:
你能根據(jù)對數(shù)的定義推導(dǎo)出下面的換底公式嗎?
>0,且≠1,>0,且≠1,>0
10、先讓學(xué)生自己探究討論,教師巡視,最后投影出證明過程.
設(shè)
且
即:
所以:
小結(jié):以上這個式子換底公式,換的底C只要滿足C>0且C≠1就行了,除此之外,對C再也沒有什么特定的要求.
提問:你能用自己的話概括出換底公式嗎?
說明:我們使用的計算器中,“”通常是常用對數(shù). 因此,要使用計算器對數(shù),一定要先用換底公式轉(zhuǎn)化為常用對數(shù). 如:
即計算的值的按鍵順序為:“”→“3”→“÷”→“”→“2” →“=”
再如:在前面要求我國人口達到18億的年份,就是要計算
所以
=
練習(xí):P79 練習(xí)4
讓學(xué)生自己閱讀思考P77~P78的例5,例的題目,教師點撥.
3、歸納小結(jié)
(1)學(xué)習(xí)歸納本節(jié)
(2)你認為學(xué)習(xí)對數(shù)有什么意義?大家議論.
4、作業(yè)
(1)書面作業(yè):P86 習(xí)題2.2 第3、4題 P87 第11、12題
2、思考:(1)證明和應(yīng)用對數(shù)運算性質(zhì)時,應(yīng)注意哪些問題?
(2)