2019高考數(shù)學(xué)《從課本到高考》之集合與函數(shù) 專題04 函數(shù)的性質(zhì)學(xué)案

上傳人:彩*** 文檔編號:104773940 上傳時間:2022-06-11 格式:DOC 頁數(shù):10 大?。?70KB
收藏 版權(quán)申訴 舉報 下載
2019高考數(shù)學(xué)《從課本到高考》之集合與函數(shù) 專題04 函數(shù)的性質(zhì)學(xué)案_第1頁
第1頁 / 共10頁
2019高考數(shù)學(xué)《從課本到高考》之集合與函數(shù) 專題04 函數(shù)的性質(zhì)學(xué)案_第2頁
第2頁 / 共10頁
2019高考數(shù)學(xué)《從課本到高考》之集合與函數(shù) 專題04 函數(shù)的性質(zhì)學(xué)案_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019高考數(shù)學(xué)《從課本到高考》之集合與函數(shù) 專題04 函數(shù)的性質(zhì)學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)《從課本到高考》之集合與函數(shù) 專題04 函數(shù)的性質(zhì)學(xué)案(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題4 函數(shù)的性質(zhì) 【典例解析】 1.(必修1第44頁復(fù)習(xí)參考題A組第9題)已知函數(shù)在上具有單調(diào)性, 求實數(shù)的取值范圍. 【解析】方法一:的對稱軸,要使函數(shù)在上具有單調(diào)性,則或,解得的取值范圍或. 方法二:可逆向思考,若時,在區(qū)間上無單調(diào)性,解得: 取它的補集得:的取值范圍或. 【反思回顧】(1)知識反思;函數(shù)單調(diào)性的概念,二次函數(shù)及其性質(zhì); (2)解題反思;本題已知區(qū)間有單調(diào)性,而對稱軸不確定,即為軸動區(qū)間定問題??上惹蟪龆魏瘮?shù)含有參數(shù)的對稱軸方程,再根據(jù)題中條件所給的區(qū)間建立方程或不等式求出參數(shù)的范圍。 2.(必修1第39頁習(xí)題1.3題A組第6題)已知函數(shù) 是定義

2、域在R 上的奇函數(shù), 當(dāng) 時,。畫出函數(shù)的圖象,并求出函數(shù)的解析式。 【答案】見解析 【解析】設(shè)時,則,又當(dāng)時,,則 又是定義域在R 上的奇函數(shù);所以 則得:,可得; 【反思回顧】(1)知識反思;函數(shù)奇偶性的概念,二次函數(shù)的圖像; (2)解題反思;本題先利用奇函數(shù)的圖象關(guān)于原點對稱畫出函數(shù)的圖象,在利用奇函數(shù)的定義求出函數(shù)的解析式.利用奇偶性求函數(shù)解析式,此類問題的一般做法是: ①“求誰設(shè)誰”,即在哪個區(qū)間求解析式,x就設(shè)在哪個區(qū)間內(nèi). ②利用的奇偶性f(x) =-f(- x)或f(x) =f(-x) ③要利用已知區(qū)間的解析式進行代入,從而解出f(x) . 3.(必修

3、1第39頁復(fù)習(xí)參考題B組第3題)已知函數(shù)是偶函數(shù),而且在上是減函數(shù), 判斷在上是增函數(shù)還是減函數(shù),并證明你的判斷. 【解析】在上是減函數(shù); 證明:設(shè)x1<x2<0則-x1>-x2>0, ∵在(0,+∞)上是增函數(shù)∴f(-x1)>f(-x2) 又是偶函數(shù)∴f(-x1)=f(x1),f(-x2)=x2) ∴f(x1)>f(x2)∴在(-∞,0)上是減函數(shù)。 【反思回顧】(1)知識反思;函數(shù)奇偶性與單調(diào)性 (2)解題反思;本題為抽象函數(shù)單調(diào)性的證明,可由條件出發(fā),遵循單調(diào)性的證明步驟(設(shè),作差,下結(jié)論),關(guān)鍵需借助偶函數(shù)的性質(zhì)進行替換,完成證明。同時啟發(fā)我們注意函數(shù)性質(zhì)之間的聯(lián)系。

4、 【知識背囊】 1.函數(shù)的單調(diào)性 (1)單調(diào)函數(shù)的定義 增函數(shù) 減函數(shù) 定義 一般地,設(shè)函數(shù)f(x)的定義域為I:如果對于定義域I內(nèi)某個區(qū)間D上的任意兩個自變量的值x1,x2 當(dāng)x1f(x2),那么就說函數(shù)f(x)在區(qū)間D上是減函數(shù) 圖象描述 自左向右看圖象是上升的 自左向右看圖象是下降的 (2)單調(diào)區(qū)間的定義 如果函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,區(qū)間D叫做函數(shù)y=f(x)的單調(diào)區(qū)

5、間. 2.函數(shù)的最值 前提 設(shè)函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足 條件 (1)對于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)對于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 結(jié)論 M為最大值 M為最小值 3.函數(shù)的奇偶性 奇偶性 定義 圖象特點 偶函數(shù) 如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)是偶函數(shù) 關(guān)于y軸對稱 奇函數(shù) 如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)是奇函數(shù) 關(guān)于原點對稱

6、4.函數(shù)的周期性 (1)周期函數(shù):對于函數(shù)y=f(x),如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的任何值時,都有f(x+T)=f(x),那么就稱函數(shù)y=f(x)為周期函數(shù),稱T為這個函數(shù)的周期. (2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期. 【變式訓(xùn)練】 變式1.已知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則a的取值范圍是( ) A. B. C. D. 【答案】D. 【解析】函數(shù)圖像是開口向上的拋物線,其對稱軸是,由已知函數(shù)在區(qū)間 內(nèi)單調(diào)遞減可知

7、區(qū)間應(yīng)在直線的左側(cè),∴,解得,故選D. 變式2.已知函數(shù)f(x)=2ax2+4(a-3)x+5在區(qū)間(-∞,3)上是減函數(shù),則a的取值范圍 是(  ) A. B. C. D. 【答案】D 【解析】當(dāng)a=0時,f(x)=-12x+5,在(-∞,3)上是減函數(shù); 當(dāng)a≠0時,由得0

8、的滿足,所以由得, 即使成立的滿足,選D. 變式4.已知定義域為的奇函數(shù)滿足,且當(dāng)時, ,則( ) A. -2 B. C. 3 D. 【答案】D 【解析】因為奇函數(shù)滿足,所以, 即周期為3,所以 ,故選D. 變式5.已知函數(shù)為奇函數(shù),且當(dāng)時, ,則__________. 【答案】-2 【解析】∵函數(shù)為奇函數(shù),且當(dāng)時, ,。 變式6.若在區(qū)間上是增函數(shù),則的取值范圍是__________. 【答案】 【解析】∵函數(shù),結(jié)合復(fù)合函數(shù)的增減性,再根據(jù)在 為增函數(shù),可得在 為增函數(shù)

9、,∴,解得,故答案為:. 變式7.已知定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上是減函數(shù),若f(1-m)f(m),則實數(shù)m的取值范圍是____. 【答案】 【解析】由偶函數(shù)的定義,,又由f(x)在區(qū)間[0,2]上是減函數(shù), 所以.故答案:. 變式8.已知函數(shù)為奇函數(shù), ,若,則數(shù)列的前2018項和為 【答案】2018 【解析】∵函數(shù)為奇函數(shù)圖象關(guān)于原點對稱,∴函數(shù)的圖象關(guān)于點(,0)對稱, ∴函數(shù)的圖象關(guān)于點(,1)對稱,∴,∵, ∴數(shù)列的前2018項之和為。 反思:本題主要考查函數(shù)的奇偶性及對稱性結(jié)合數(shù)列,抓住通項特征可以看出是首尾相加是

10、定值,采用倒序相加會很快得出答案。 【高考鏈接】 1.【2015高考廣東理3】下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是( ) A. B. C. D. 【答案】. 【解析】記,則,,那么,,所以既不是奇函數(shù)也不是偶函數(shù),依題可知、、依次是奇函數(shù)、偶函數(shù)、偶函數(shù),故選. 2.【2017北京文5】已知函數(shù),則為( ) (A)是偶函數(shù),且在R上是增函數(shù) (B)是奇函數(shù),且在R上是增函數(shù) (C)是偶函數(shù),且在R上是減函數(shù) (D)是奇函數(shù),且在R上是增函數(shù) 【答案】B 【解析】

11、,所以函數(shù)是奇函數(shù),并且是增函數(shù), 是減函數(shù),根據(jù)增函數(shù)-減函數(shù)=增函數(shù),所以函數(shù)是增函數(shù),故選B. 3.【2017課標(biāo)1文9】已知函數(shù),則( ) A.在(0,2)單調(diào)遞增 B.在(0,2)單調(diào)遞減 C.y=的圖像關(guān)于直線x=1對稱 D.y=的圖像關(guān)于點(1,0)對稱 【答案】C 【解析】由題意知,,所以的圖象關(guān)于直線對稱,C正確,D錯誤;又(),在上單調(diào)遞增,在上單調(diào)遞減,A,B錯誤,故選C. 4.【2014課標(biāo)Ⅰ理3】設(shè)函數(shù)的定義域為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論中正確的是( ) A.是偶函數(shù)     B. 是奇函數(shù)

12、 C.. 是奇函數(shù) D.是奇函數(shù) 【答案】C 【解析】設(shè),則,因為是奇函數(shù),是偶函數(shù),故,即是奇函數(shù),選C. 反思:本題主要考查了函數(shù)的奇偶性,在研究函數(shù)的奇偶性時,一定要注意的奇偶性,只有具備奇偶性,函數(shù)才是偶函數(shù),否者不成立. 5.【2014高考陜西版理第7題】下列函數(shù)中,滿足“”的單調(diào)遞增函數(shù)是( ) (A) (B) (C) (D) 【答案】 【解析】選項:由,,得,所以錯誤;選項:由,,得,所以錯誤;選項:函數(shù)是定義在上減函數(shù),所以錯誤;選項:由,,得;又函數(shù)是定義在上增函數(shù),所以正確;故選. 6.【2017山東,文10

13、】若函數(shù)(e=2.71828,是自然對數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱函數(shù)具有M性質(zhì),下列函數(shù)中具有M性質(zhì)的是 A . B. C. D. 【答案】A 【解析】由A,令,,則在R上單調(diào)遞增,具有M性質(zhì),故選A. 7.【2017課標(biāo)II文8】函數(shù) 的單調(diào)遞增區(qū)間是( ) A. B. C. D. 【答案】D 【解析】函數(shù)有意義,則: ,解得: 或 ,結(jié)合二次函數(shù)的單調(diào)性、對數(shù)函數(shù)的單調(diào)性和復(fù)合函數(shù)同增異減的原則可得函數(shù)的單調(diào)增區(qū)間為 .故選D.

14、8.【 2014湖南3】已知分別是定義在上的偶函數(shù)和奇函數(shù),且,則( ) A. B. C. 1 D. 3 【答案】C 【解析】分別令和可得和,因為函數(shù)分別是定義在上的偶函數(shù)和奇函數(shù),所以,即 ,則,故選C. 9.【2016高考山東理數(shù)】已知函數(shù)f(x)的定義域為R.當(dāng)x<0時, ;當(dāng) 時,;當(dāng) 時, .則f(6)= ( ) (A)?2 (B)?1 (C)0 (D)2 【答案】D 【解析】當(dāng)時,,所以當(dāng)時,函數(shù)是周期為 的周期函數(shù),所以,又函數(shù)是奇函數(shù),所以,故選D. 10.【20

15、18年理數(shù)全國卷II】已知是定義域為的奇函數(shù),滿足.若,則 ( ) A. B. 0 C. 2 D. 50 【答案】C 【解析】分析:先根據(jù)奇函數(shù)性質(zhì)以及對稱性確定函數(shù)周期,再根據(jù)周期以及對應(yīng)函數(shù)值求結(jié)果. 詳解:因為是定義域為的奇函數(shù),且,所以,因此,因為,所以,,從而,選C. 反思:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解. 11.【2018年理新課標(biāo)I卷】設(shè)函數(shù),若為奇函數(shù),則曲線

16、在點處的切線方程為( ) A. B. C. D. 【答案】D 【解析】分析:利用奇函數(shù)偶此項系數(shù)為零求得,進而得到的解析式,再對求導(dǎo)得出切線的斜率,進而求得切線方程. 詳解:因為函數(shù)是奇函數(shù),所以,解得,所以,,所以,所以曲線在點處的切線方程為,化簡可得,選D. 12. 【2015高考新課標(biāo)1理13】若函數(shù)f(x)=為偶函數(shù),則a= 【答案】1 【解析】由題知是奇函數(shù),所以 =,解得=1. 13.【2017課標(biāo)II文14】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,, 則 ___

17、______. 【答案】12 【解析】. 14. 【2014新課標(biāo),理15】已知偶函數(shù)在單調(diào)遞減,.若,則的取值范圍是__________. 【答案】 【解析】因為是偶函數(shù),所以不等式,又因為在上單調(diào)遞減,所以,解得. 15.【2016年高考四川理數(shù)】已知函數(shù)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時,,則= . 【答案】-2 【解析】:因為函數(shù)是定義在上周期為2的奇函數(shù),所以 ,所以,即,,所以. 16.【2017山東文14】已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x-2).若當(dāng) 時,,則f(919)= . 【答案】 【解析】由f(x+4)=f(x-2)可知,是周期函數(shù),且,所以. 17. 【2016高考天津理數(shù)】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-,0)上單調(diào)遞增.若實數(shù)a足,則a的取值范圍是______. 【答案】 【解析】由題意在上遞減,又是偶函數(shù),則不等式或化為,則,,解得,即答案為. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!